Recent findings of a potential human carcinogen, acrylamide, in foods have focused research on the possible mechanisms of formation. We present a mechanism for the formation of acrylamide from the reaction of the amino acid asparagine and a carbonyl-containing compound at typical cooking temperatures. The mechanism involves formation of a Schiff base followed by decarboxylation and elimination of either ammonia or a substituted imine under heat to yield acrylamide. Isotope substitution studies and mass spectrometric analysis of heated model systems confirm the presence of key reaction intermediates. Further confirmation of this mechanism is accomplished through selective removal of asparagine with asparaginase that results in a reduced level of acrylamide in a selected heated food.
Glycation and oxidation reactions contribute to protein modification in aging and diabetes. Formation of dicarbonyl sugars during autoxidation of glucose is the hypothetical first step in the autoxidative glycosylation and subsequent browning of proteins by glucose [Wolff, S. P., & Dean, R. T. (1987) Biochem. J. 245, 243-250]. In order to identify the dicarbonyl sugar(s) formed during autoxidation of glucose under physiological conditions, glucose was incubated in phosphate buffer (pH 7.4) at 37 degrees C under air (oxidative conditions) or nitrogen with transition metal chelators (antioxidative conditions). Dicarbonyl compounds were analyzed spectrophotometrically and by HPLC after reaction with Girard-T reagent. Carbohydrates were analyzed by gas chromatography-mass spectrometry. Both dicarbonyl sugar and arabinose concentrations increased with time and glucose concentration in incubations conducted under oxidative conditions; only trace amounts of these products were detected in glucose incubated under antioxidative conditions. HPLC analysis of adducts formed with Girard-T reagent indicated that glyoxal was the only alpha-dicarbonyl sugar formed on autoxidation of glucose. Glyoxal and arabinose accounted for > or = 50% of the glucose lost during a 21 day incubation. Neither glucosone nor its degradation product, ribulose, was detectable. Reaction of glyoxal with RNase yielded the glycoxidation product, N epsilon-(carboxymethyl)lysine, while arabinose is a source of pentosidine. Our results implicate glyoxal and arabinose as intermediates in the browning and crosslinking of proteins by glucose under oxidative conditions. They also provide a mechanism by which antioxidants and dicarbonyl trapping reagents, such as aminoguanidine, limit glycoxidation reactions and support further evaluation of these types of compounds for inhibition of chemical modification and crosslinking of proteins during aging and diabetes.
The amount of advanced glycation end-products (AGE) in tissue proteins increases in diabetes mellitus, and the concentration of a subclass of AGEs, known as glycoxidation products, also increases with chronological age in proteins. The rate of accumulation of glycoxidation products is accelerated in diabetes and age-adjusted concentrations of two glycoxidation products, N epsilon-(carboxymethyl)lysine (CML) and pentosidine, correlate with the severity of complication in diabetic patients. Although AGEs and glycoxidation products are implicated in the development of diabetic complications, these compounds are present at only trace concentrations in tissue proteins and account for only a fraction of the chemical modifications in AGE proteins prepared in vitro. The future of the AGE hypothesis depends on the chemical characterization of a significant fraction of the total AGEs in tissue proteins, a quantitative assessment of their effects on protein structure and function, and an assessment of their role as mediators of biological responses. In this manuscript we describe recent work leading to characterization of new AGEs and glycoxidation products. These compounds include: (1) the imidazolone adduct formed by reaction of 3-deoxyglucosone with arginine residues in protein; (2) N epsilon-(carboxyethyl)lysine, an analogue of CML formed on reaction of methylglyoxal with lysine; (3) glyoxal-lysine dimer; and (4) methyl-glyoxal-lysine dimer, which are imidazolium crosslinks formed by reaction of glyoxal or methylglyoxal with lysine residues in protein. The presence of 3-deoxyglucosone, methylglyoxal and glyoxal in vivo and the formation of the above AGEs in model carbonyl-amine reaction systems suggests that these AGEs are also formed in vivo and contribute to tissue damage resulting from the Maillard reaction.
Food and beverage products stored in polyethylene (PE) containers may absorb some of PE's volatile minor components and become tainted by its characteristic "plastic" odor. High-density PE containers that had imparted "plastic" odor to an experimental corn chip product were analyzed by simultaneous distillation/extraction to remove the volatile components, by gas chromatography/olfactometry (GC/O) to locate the offending components and by 2-D GC/mass spectrometry (MS) to identify the major "plastic" odor contributor (8-nonenal). The identification was made using high-resolution electron ionization and chemical ionization MS data to narrow the possibilities to two isomers of nonenal, followed by retrieval of reference spectra and confirmatory synthesis. By monitoring 8-nonenal in HDPE containers and corn chips it was demonstrated that 8-nonenal tracks with "plastic" aroma observed in containers and with "plastic" flavor observed in corn chips stored in the containers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.