The initiation of hemodialysis is associated with an accelerated decline of cognitive function and an increased incidence of cerebrovascular accidents and white matter lesions. Investigators have hypothesized that the repetitive circulatory stress of hemodialysis induces ischemic cerebral injury, but the mechanism is unclear. We studied the acute effect of conventional hemodialysis on cerebral blood flow (CBF), measured by [O]HO positron emission tomography-computed tomography (PET-CT). During a single hemodialysis session, three [O]HO PET-CT scans were performed: before, early after the start of, and at the end of hemodialysis. We used linear mixed models to study global and regional CBF change during hemodialysis. Twelve patients aged ≥65 years (five women, seven men), with a median dialysis vintage of 46 months, completed the study. Mean (±SD) arterial BP declined from 101±11 mm Hg before hemodialysis to 93±17 mm Hg at the end of hemodialysis. From before the start to the end of hemodialysis, global CBF declined significantly by 10%±15%, from a mean of 34.5 to 30.5 ml/100g per minute (difference, -4.1 ml/100 g per minute; 95% confidence interval, -7.3 to -0.9 ml/100 g per minute; =0.03). CBF decline (20%) was symptomatic in one patient. Regional CBF declined in all volumes of interest, including the frontal, parietal, temporal, and occipital lobes; cerebellum; and thalamus. Higher tympanic temperature, ultrafiltration volume, ultrafiltration rate, and pH significantly associated with lower CBF. Thus, conventional hemodialysis induces a significant reduction in global and regional CBF in elderly patients. Repetitive intradialytic decreases in CBF may be one mechanism by which hemodialysis induces cerebral ischemic injury.
Near-infrared spectroscopy (NIRS) is used to monitor cerebral tissue oxygenation (rSO 2 ) depending on cerebral blood flow (CBF), cerebral blood volume and blood oxygen content. We explored whether NIRS might be a more easy applicable proxy to [ 15 O]H 2 O positron emission tomography (PET) for detecting CBF changes during hemodialysis. Furthermore, we compared potential determinants of rSO 2 and CBF. In 12 patients aged ! 65 years, NIRS and PET were performed simultaneously: before (T1), early after start (T2), and at the end of hemodialysis (T3). Between T1 and T3, the relative change in frontal rSO 2 (DrSO 2 ) was À8 AE 9% (P ¼ 0.001) and À5 AE 11% (P ¼ 0.08), whereas the relative change in frontal gray matter CBF (DCBF) was À11 AE 18% (P ¼ 0.009) and À12 AE 16% (P ¼ 0.007) for the left and right hemisphere, respectively. DrSO 2 and DCBF were weakly correlated for the left (r 0.31, P ¼ 0.4), and moderately correlated for the right (r 0.69, P ¼ 0.03) hemisphere. The Bland-Altman plot suggested underestimation of DCBF by NIRS. Divergent associations of pH, pCO 2 and arterial oxygen content with rSO 2 were found compared to corresponding associations with CBF. In conclusion, NIRS could be a proxy to PET to detect intradialytic CBF changes, although NIRS and PET capture different physiological parameters of the brain.
Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer’s disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.