This paper presents a co-clustering technique that, given a collection of images and their hierarchies, clusters nodes from these hierarchies to obtain a coherent multiresolution representation of the image collection. We formalize the co-clustering as a Quadratic Semi-Assignment Problem and solve it with a linear programming relaxation approach that makes effective use of information from hierarchies. Initially, we address the problem of generating an optimal, coherent partition per image and, afterwards, we extend this method to a multiresolution framework. Finally, we particularize this framework to an iterative multiresolution video segmentation algorithm in sequences with small variations. We evaluate the algorithm on the Video Occlusion/Object Boundary Detection Dataset, showing that it produces state-of-the-art results in these scenarios.
The popularization of multimedia content on the Web has arised the need to automatically understand, index and retrieve it. In this paper we present ViTS, an automatic Video Tagging System which learns from videos, their web context and comments shared on social networks. ViTS analyses massive multimedia collections by Internet crawling, and maintains a knowledge base that updates in real time with no need of human supervision. As a result, each video is indexed with a rich set of labels and linked with other related contents. ViTS is an industrial product under exploitation with a vocabulary of over 2.5M concepts, capable of indexing more than 150k videos per month. We compare the quality and completeness of our tags with respect to the ones in the YouTube-8M dataset, and we show how ViTS enhances the semantic annotation of the videos with a larger number of labels (10.04 tags/video), with an accuracy of 80,87%. Extracted tags and video summaries are publicly available. 1
We present a video object segmentation approach that extends the particle filter to a region-based image representation. Image partition is considered part of the particle filter measurement, which enriches the available information and leads to a re-formulation of the particle filter. The prediction step uses a co-clustering between the previous image object partition and a partition of the current one, which allows us to tackle the evolution of non-rigid structures. Particles are defined as unions of regions in the current image partition and their propagation is computed through a single co-clustering. The proposed technique is assessed on the SegTrack dataset, leading to satisfactory perceptual results and obtaining very competitive pixel error rates compared with the state-of-the-art methods.
Abstract-This paper presents a strategy for estimating the geometry of an interest object from a monocular video sequence acquired by a walking humanoid robot. The problem is solved using a space carving algorithm, which relies on both the accurate extraction of the occluding boundaries of the object as well as the precise estimation of the camera pose for each video frame. For data acquisition, a monocular visual-based control has been developed that drives the trajectory of the robot around an object placed on a small table. Due to the stepping of the humanoid, the recorded sequence is contaminated with artefacts that affect the correct extraction of contours along the video frames. To overcome this issue, a method that assigns a fitness score for each frame is proposed, delivering a subset of camera poses and video frames that produce consistent 3D shape estimations of the objects used for experimental evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.