The adsorption and dissociation of carbon monoxide (CO) have been studied on 81 Transition Metal (TM) surfaces, with TMs having body centred cubic (bcc), face centred cubic (fcc), or hexagonal close-packed (hcp) crystalline structures. For each surface, CO, C, and O adsorptions, and C+O co-adsorptions were studied by density functional theory calculations on suited slab models, using Perdew-Burke-Ernzerhof functional with Grimme’s D3 correction for dispersive forces. CO dissociation activation and reaction energies, ΔE, were determined. The values, including zero point energy, were used to capture chemical trends along groups, d-series, and crystallographic phases concerning CO adsorption and dissociation, while simulated infrared (IR) spectroscopies and thermodynamic phase diagrams are provided. Late fcc TMs are found to adsorb CO weakly, perpendicularly, and are IR-visible, opposite to early bcc TMs, while hcp cases are distributed along these two extremes. The d-band centre, εd, is found to be the best descriptor for CO adsorptions and C+O co-adsorptions, ΔE, and activation energies. The implications of the found trends and descriptors are discussed on processes requiring CO dissociation, such as Fischer-Tropsch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.