Stiff‐stilbene, a sterically restricted fused ring analogue of stilbene, has been regularly used as a model compound in theoretical studies of stilbene photoisomerization. Lately, owing to its excellent photoswitching properties, it is increasingly being applied to reversibly control the properties and function of chemical as well as biological systems. Stiff‐stilbene photoswitches possess a number of advantageous properties including a high quantum yield for photoisomerization and a high thermal stability. Furthermore, they undergo a large geometrical change upon isomerization and their synthesis is straightforward. Herein, we provide an overview of the basic properties of stiff‐stilbene and of recent applications in supramolecular chemistry, catalysis, and biological systems.
A tetra-α super aryl-extended tetra-pyridyl calix[4]pyrrole self-assembles into a mono-Pd(ii) cage featuring two different and converging polar binding sites.
A reconfigurable calix[4]pyrrole receptor containing a stiff-stilbene strap can be switched by light between a strong and weak binding form, showing an 8000-fold affinity difference for chloride.
Donor-acceptor substituted stiff-stilbene is shown to undergo isomerization induced by visible light avoiding the need for harmful UV light. This visible-light photoswitching is inhibited by protonation of the dimethylaminodonor unit, disrupting the push-pull character and thus, gating of the photochromic properties is allowed by acid/ base addition. Remarkably, the addition of a mild acid also triggers fast thermal back-isomerization, which is unprecedented for stiff-stilbene photoswitches usually having a very high energy barrier for this process. These combined features offer unique orthogonal control over switching behavior by light and protonation, which is investigated in detail by 1 H NMR and UV/Vis spectroscopy. In addition, TD-DFT calculations are used to gain further insight into the absorption properties. Our results will help elevating the level of control over dynamic behavior in stiff-stilbene applications.
Stiff‐stilbene, a sterically restricted fused ring analogue of stilbene, has been regularly used as a model compound in theoretical studies of stilbene photoisomerization. Lately, owing to its excellent photoswitching properties, it is increasingly being applied to reversibly control the properties and function of chemical as well as biological systems. Stiff‐stilbene photoswitches possess a number of advantageous properties including a high quantum yield for photoisomerization and a high thermal stability. Furthermore, they undergo a large geometrical change upon isomerization and their synthesis is straightforward. Herein, we provide an overview of the basic properties of stiff‐stilbene and of recent applications in supramolecular chemistry, catalysis, and biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.