Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.
Inflammation and oxidative stress are recognized as important contributors to amyotrophic lateral sclerosis (ALS) disease pathogenesis. Our aim was to evaluate the impact of selected single-nucleotide polymorphisms in genes involved in inflammation and oxidative stress on ALS susceptibility and modification. One-hundred-and-eighty-five ALS patients and 324 healthy controls were genotyped for nine polymorphisms in seven antioxidant and inflammatory genes using competitive allele-specific PCR. Logistic regression; nonparametric tests and survival analysis were used in the statistical analysis. Investigated polymorphisms were not associated with ALS susceptibility. Carriers of at least one polymorphic SOD2 rs4880 T or IL1B rs1071676 C allele more often had bulbar ALS onset (p = 0.036 and p = 0.039; respectively). IL1B rs1071676 was also associated with a higher rate of disease progression (p = 0.015). After adjustment for clinical parameters; carriers of two polymorphic IL1B rs1071676 C alleles had shorter survival (HR = 5.02; 95% CI = 1.92–13.16; p = 0.001); while carriers of at least one polymorphic CAT rs1001179 T allele had longer survival (HR = 0.68; 95% CI = 0.47–0.99; p = 0.046). Our data suggest that common genetic variants in the antioxidant and inflammatory pathways may modify ALS disease. Such genetic information could support the identification of patients that may be responsive to the immune or antioxidant system—based therapies.
Oxidative stress and neuroinflammation are important processes involved in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). Numerous risk factors, including genetic background, can affect the complex interplay between those mechanisms in the aging brain and can also affect typical AD hallmarks: amyloid plaques and neurofibrillary tangles. Our aim was to evaluate the association of polymorphisms in oxidative stress- and inflammation-related genes with cerebrospinal fluid (CSF) biomarker levels and cognitive test results. The study included 54 AD patients, 14 MCI patients with pathological CSF biomarker levels, 20 MCI patients with normal CSF biomarker levels and 62 controls. Carriers of two polymorphic IL1B rs16944 alleles had higher CSF Aβ1–42 levels (p = 0.025), while carriers of at least one polymorphic NFE2L2 rs35652124 allele had lower CSF Aβ1–42 levels (p = 0.040). Association with IL1B rs16944 remained significant in the AD group (p = 0.029). Additionally, MIR146A rs2910164 was associated with Aβ42/40 ratio (p = 0.043) in AD. Significant associations with cognitive test scores were observed for CAT rs1001179 (p = 0.022), GSTP1 rs1138272 (p = 0.005), KEAP1 rs1048290 and rs9676881 (both p = 0.019), as well as NFE2L2 rs35652124 (p = 0.030). In the AD group, IL1B rs1071676 (p = 0.004), KEAP1 rs1048290 and rs9676881 (both p = 0.035) remained associated with cognitive scores. Polymorphisms in antioxidative and inflammation genes might be associated with CSF biomarkers and cognitive test scores and could serve as additional biomarkers contributing to early diagnosis of dementia.
miRNAs play an important role in neurodegenerative diseases. Many miRNA-target gene interactions (MTI) have been experimentally confirmed and associated with Alzheimer’s disease (AD). miRNAs may also be contained within extracellular vesicles (EVs), mediators of cellular communication and a potential source of circulating biomarkers in body fluids. Therefore, EV-associated miRNAs (EV-miRNAs) in peripheral blood could support earlier and less invasive AD diagnostics. We aimed to prioritize EV-related miRNA with AD-related genes and to identify the most promising candidates for novel AD biomarkers. A list of unique EV-miRNAs from the literature was combined with a known set of AD risk genes and enriched for MTI. Additionally, miRNAs associated with the AD phenotype were combined with all known target genes in MTI enrichment. Expression in different sample types was analyzed to identify AD-associated miRNAs with the greatest potential as AD circulating biomarkers. Four common MTI were observed between EV-miRNAs and AD-associated miRNAs: hsa-miR-375–APH1B, hsa-miR-107–CDC42SE2, hsa-miR-375–CELF2, and hsa-miR-107–IL6. An additional 61 out of 169 unique miRNAs (36.1%) and seven out of 84 unique MTI (8.3%), observed in the body fluids of AD patients, were proposed as very strong AD-circulating biomarker candidates. Our analysis summarized several potential novel AD biomarkers, but further studies are needed to evaluate their potential in clinical practice.
IntroductionDevelopment and worsening of most common neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis, have been associated with COVID-19 However, the mechanisms associated with neurological symptoms in COVID-19 patients and neurodegenerative sequelae are not clear. The interplay between gene expression and metabolite production in CNS is driven by miRNAs. These small non-coding molecules are dysregulated in most common neurodegenerative diseases and COVID-19.MethodsWe have performed a thorough literature screening and database mining to search for shared miRNA landscapes of SARS-CoV-2 infection and neurodegeneration. Differentially expressed miRNAs in COVID-19 patients were searched using PubMed, while differentially expressed miRNAs in patients with five most common neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis) were searched using the Human microRNA Disease Database. Target genes of the overlapping miRNAs, identified with the miRTarBase, were used for the pathway enrichment analysis performed with Kyoto Encyclopedia of Genes and Genomes and Reactome.ResultsIn total, 98 common miRNAs were found. Additionally, two of them (hsa-miR-34a and hsa-miR-132) were highlighted as promising biomarkers of neurodegeneration, as they are dysregulated in all five most common neurodegenerative diseases and COVID-19. Additionally, hsa-miR-155 was upregulated in four COVID-19 studies and found to be dysregulated in neurodegeneration processes as well. Screening for miRNA targets identified 746 unique genes with strong evidence for interaction. Target enrichment analysis highlighted most significant KEGG and Reactome pathways being involved in signaling, cancer, transcription and infection. However, the more specific identified pathways confirmed neuroinflammation as being the most important shared feature.DiscussionOur pathway based approach has identified overlapping miRNAs in COVID-19 and neurodegenerative diseases that may have a valuable potential for neurodegeneration prediction in COVID-19 patients. Additionally, identified miRNAs can be further explored as potential drug targets or agents to modify signaling in shared pathways.Graphical AbstractShared miRNA molecules among the five investigated neurodegenerative diseases and COVID-19 were identified. The two overlapping miRNAs, hsa-miR-34a and has-miR-132, present potential biomarkers of neurodegenerative sequelae after COVID-19. Furthermore, 98 common miRNAs between all five neurodegenerative diseases together and COVID-19 were identified. A KEGG and Reactome pathway enrichment analyses was performed on the list of shared miRNA target genes and finally top 20 pathways were evaluated for their potential for identification of new drug targets. A common feature of identified overlapping miRNAs and pathways is neuroinflammation. AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; COVID-19, coronavirus disease 2019; HD, Huntington’s disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; MS, multiple sclerosis; PD, Parkinson’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.