Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh β-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein.
The ability of phytochromes (Phy) to act as photointerconvertible light switches in plants and microorganisms depends on key interactions between the bilin chromophore and the apoprotein that promote bilin attachment and photointerconversion between the spectrally distinct red light-absorbing Pr conformer and far red light-absorbing Pfr conformer. Using structurally guided site-directed mutagenesis combined with several spectroscopic methods, we examined the roles of conserved amino acids within the bilin-binding domain of Deinococcus radiodurans bacteriophytochrome with respect to chromophore ligation and Pr/Pfr photoconversion. Incorporation of biliverdin IX␣ (BV), its structure in the Pr state, and its ability to photoisomerize to the first photocycle intermediate are insensitive to most single mutations, implying that these properties are robust with respect to small structural/electrostatic alterations in the binding pocket. In contrast, photoconversion to Pfr is highly sensitive to the chromophore environment. Many of the variants form spectrally bleached Meta-type intermediates in red light that do not relax to Pfr. Particularly important are Asp-207 and His-260, which are invariant within the Phy superfamily and participate in a unique hydrogen bond matrix involving the A, B, and C pyrrole ring nitrogens of BV and their associated pyrrole water. Resonance Raman spectroscopy demonstrates that substitutions of these residues disrupt the Pr to Pfr protonation cycle of BV with the chromophore locked in a deprotonated Meta-R c -like photoconversion intermediate after red light irradiation. Collectively, the data show that a number of contacts contribute to the unique photochromicity of Phy-type photoreceptors. These include residues that fix the bilin in the pocket, coordinate the pyrrole water, and possibly promote the proton exchange cycle during photoconversion.The phytochrome (Phy) 5 superfamily encompasses a large and diverse set of photoreceptors present in the plant, fungal, and bacterial kingdoms where they play critical roles in various light-regulated processes (1-3). These processes range from the control of phototaxis, pigmentation, and photosynthetic potential in proteobacteria and cyanobacteria to seed germination, chloroplast development, shade avoidance, and flowering time in higher plants. Phys are unique among photoreceptors in being able to assume two stable, photointerconvertible conformers, designated Pr and Pfr based on their respective absorption maxima in the red and far-red spectral regions. By cycling between Pr and Pfr, Phys act as light-regulated switches in various photosensory cascades.Phys are homodimeric complexes with each polypeptide containing a single bilin (or linear tetrapyrrole) chromophore, which binds autocatalytically via a thioether linkage to a positionally conserved cysteine (1-3). The photosensing portion typically contains Per/Arndt/Sim (PAS) and cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains, which are essential for bilin binding and Pr assembly, and t...
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.
The P r 3 P fr phototransformation of the bacteriophytochrome Agp1 from Agrobacterium tumefaciens and the structures of the biliverdin chromophore in the parent states and the cryogenically trapped intermediate Meta-R C were investigated with resonance Raman spectroscopy and flash photolysis. Strong similarities with the resonance Raman spectra of plant phytochrome A indicate that in Agp1 the methine bridge isomerization state of the chromophore is ZZZasa in P r and ZZEssa in P fr , with all pyrrole nitrogens being protonated. Photoexcitation of P r is followed by (at least) three thermal relaxation components in the formation of P fr with time constants of 230 s and 3.1 and 260 ms. H 2 O/D 2 O exchange reveals kinetic isotope effects of 1.9, 2.6, and 1.3 for the respective transitions that are accompanied by changes of the amplitudes. The second and the third relaxation correspond to the formation and decay of Meta-R C , respectively. Resonance Raman measurements of Meta-R C indicate that the chromophore adopts a deprotonated ZZE configuration. Measurements with a pH indicator dye show that formation and decay of Meta-R C are associated with proton release and uptake, respectively. The stoichiometry of the proton release corresponds to one proton per photoconverted molecule. The coupling of transient chromophore deprotonation and proton release, which is likely to be an essential element in the P r 3 P fr photoconversion mechanism of phytochromes in general, may play a crucial role for the structural changes in the final step of the P fr formation that switch between the active and the inactive state of the photoreceptor.Phytochromes are photoreceptors that utilize light as a source of information for controlling numerous biological processes (1, 2). The chromophore, a methine-bridged tetrapyrrole ( Fig. 1), acts as a photoswitch between two stable, spectrally distinct forms, denoted as P r and P fr according to the red and far-red absorption maxima, respectively. The P r /P fr interconversion is initiated by the rapid Z/E photoisomerization of the C-D methine bridge (3), followed by chromophore relaxations that are coupled to structural changes of the apoprotein (4). These structural changes are the trigger for signal transduction. Resonance Raman (RR) 2 and IR spectroscopy have provided valuable insight into light-induced chromophore and protein structural changes (e.g. see Refs. 5-10), but molecular and mechanistic details are not yet known and no crystal structure of a phytochrome has been reported so far.While phytochromes were originally thought to be restricted to plants, the discovery of these chromoproteins in cyanobacteria (11) and other bacteria points to the prokaryotic origin of this family of photoreceptors. In contrast to plant phytochromes, typical bacterial phytochromes are light-regulated histidine kinases. Despite the quite different regulatory functions (12, 13), plant and bacterial phytochromes exhibit structural and mechanistic similarities. The phytochromobilin chromophore of plant phytoc...
The mutants H250A and D197A of Agp1 phytochrome from Agrobacterium tumefaciens were prepared and investigated by different spectroscopic and biochemical methods. Asp-197 and His-250 are highly conserved amino acids and are part of the hydrogen-bonding network that involves the chromophore. Both substitutions cause a destabilization of the protonated chromophore in the Pr state as revealed by resonance Raman and UV-visible absorption spectroscopy. Titration experiments demonstrate a lowering of the pK a from 11.1 (wild type) to 8.8 in H250A and 7.2 in D197A. Photoconversion of the mutants does not lead to the Pfr state. H250A is arrested in a meta-Rc-like state in which the chromophore is deprotonated. For H250A and the wild-type protein, deprotonation of the chromophore in meta-Rc is coupled to the release of a proton to the external medium, whereas the subsequent proton re-uptake, linked to the formation of the Pfr state in the wild-type protein, is not observed for H250A. No transient proton exchange with the external medium occurs in D197A, suggesting that Asp-197 may be the proton release group. Both mutants do not undergo the photoinduced protein structural changes that in the wild-type protein are detectable by size exclusion chromatography. These conformational changes are, therefore, attributed to the meta-Rc 3 Pfr transition and most likely coupled to the transient proton re-uptake. The present results demonstrate that Asp-197 and His-250 are essential for stabilizing the protonated chromophore structure in the parent Pr state, which is required for the primary photochemical process, and for the complete photo-induced conversion to the Pfr state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.