Based on the data from the integrated Danish Salmonella surveillance in 1999, we developed a mathematical model for quantifying the contribution of each of the major animal-food sources to human salmonellosis. The model was set up to calculate the number of domestic and sporadic cases caused by different Salmonella sero and phage types as a function of the prevalence of these Salmonella types in the animal-food sources and the amount of food source consumed. A multiparameter prior accounting for the presumed but unknown differences between serotypes and food sources with respect to causing human salmonellosis was also included. The joint posterior distribution was estimated by fitting the model to the reported number of domestic and sporadic cases per Salmonella type in a Bayesian framework using Markov Chain Monte Carlo simulation. The number of domestic and sporadic cases was obtained by subtracting the estimated number of travel- and outbreak-associated cases from the total number of reported cases, i.e., the observed data. The most important food sources were found to be table eggs and domestically produced pork comprising 47.1% (95% credibility interval, CI: 43.3-50.8%) and 9% (95% CI: 7.8-10.4%) of the cases, respectively. Taken together, imported foods were estimated to account for 11.8% (95% CI: 5.0-19.0%) of the cases. Other food sources considered had only a minor impact, whereas 25% of the cases could not be associated with any source. This approach of quantifying the contribution of the various sources to human salmonellosis has proved to be a valuable tool in risk management in Denmark and provides an example of how to integrate quantitative risk assessment and zoonotic disease surveillance.
Quantitative risk assessment (QRA) is rapidly accumulating recognition as the most practical method for assessing the risks associated with microbial contamination of foodstuffs. These risk analyses are most commonly developed in commercial computer spreadsheet applications, combined with Monte Carlo simulation add-ins that enable probability distributions to be inserted into a spreadsheet. If a suitable model structure can be defined and all of the variables within that model reasonably quantified, a QRA will demonstrate the sensitivity of the severity of the risk to each stage in the risk-assessment model. It can therefore provide guidance for the selection of appropriate risk-reduction measures and a quantitative assessment of the benefits and costs of these proposed measures. However, very few reports explaining QRA models have been submitted for publication in this area. There is, therefore, little guidance available to those who intend to embark on a full microbial QRA. This paper looks at a number of modeling techniques that can help produce more realistic and accurate Monte Carlo simulation models. The use and limitations of several distributions important to microbial risk assessment are explained. Some simple techniques specific to Monte Carlo simulation modelling of microbial risks using spreadsheets are also offered which will help the analyst more realistically reflect the uncertain nature of the scenarios being modeled. simulation, food safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.