A highly potent and selective DGAT-1 inhibitor was identified and used in rodent models of obesity and postprandial chylomicron excursion to validate DGAT-1 inhibition as a novel approach for the treatment of metabolic diseases. Specifically, compound 4a conferred weight loss and a reduction in liver triglycerides when dosed chronically in DIO mice and depleted serum triglycerides following a lipid challenge in a dose-dependent manner, thus, reproducing major phenotypical characteristics of DGAT-1(-/-) mice.
We describe here N-phenylpyrrolidine-based inhibitors of HCV NS5A with excellent potency, metabolic stability, and pharmacokinetics. Compounds with 2S,5S stereochemistry at the pyrrolidine ring provided improved genotype 1 (GT1) potency compared to the 2R,5R analogues. Furthermore, the attachment of substituents at the 4-position of the central N-phenyl group resulted in compounds with improved potency. Substitution with tert-butyl, as in compound 38 (ABT-267), provided compounds with low-picomolar EC50 values and superior pharmacokinetics. It was discovered that compound 38 was a pan-genotypic HCV inhibitor, with an EC50 range of 1.7-19.3 pM against GT1a, -1b, -2a, -2b, -3a, -4a, and -5a and 366 pM against GT6a. Compound 38 decreased HCV RNA up to 3.10 log10 IU/mL during 3-day monotherapy in treatment-naive HCV GT1-infected subjects and is currently in phase 3 clinical trials in combination with an NS3 protease inhibitor with ritonavir (r) (ABT-450/r) and an NS5B non-nucleoside polymerase inhibitor (ABT-333), with and without ribavirin.
Hepatic stellate cells become activated into myofibroblast-like cells during the early stages of hepatic injury associated with fibrogenesis. The subsequent dysregulation of hepatic stellate cell collagen gene expression is a central pathogenetic step during the development of cirrhosis. The cytoplasmic Raf and mitogen-activated protein (MAPK) kinases were found to differentially regulate alpha I(I) collagen gene expression in activated stellate cells. This suggests an unappreciated branch point exists between Raf and MAPK. A MAPK-stimulatory signal was mapped to the most proximal NF-1 and Sp-1 binding domains of the 5'-untranslated region of the collagen gene. A Raf-inhibitory signal was mapped to a further upstream binding domain involving a novel 60-kDa DNA-binding protein (p60). The cell-specific expression and induction of p60 in stellate cells during the early stages of hepatic fibrogenesis in vivo suggest a central role for this pathway during liver injury and stellate cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.