Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to solve incremental learning tasks. In this paper, we describe a framework and methodology, called instance-based learning, that generates classification predictions using only specific instances. Instance-based learning algorithms do not maintain a set of abstractions derived from specific instances. This approach extends the nearest neighbor algorithm, which has large storage requirements. We describe how storage requirements can be significantly reduced with, at most, minor sacrifices in learning rate and classification accuracy. While the storage-reducing algorithm performs well on several realworld databases, its performance degrades rapidly with the level of attribute noise in training instances. Therefore, we extended it with a significance test to distinguish noisy instances. This extended algorithm's performance degrades gracefully with increasing noise levels and compares favorably with a noise-tolerant decision tree algorithm.
Dramatic success in machine learning has led to a new wave of AI applications (for example, transportation, security, medicine, finance, defense) that offer tremendous benefits but cannot explain their decisions and actions to human users. DARPA’s explainable artificial intelligence (XAI) program endeavors to create AI systems whose learned models and decisions can be understood and appropriately trusted by end users. Realizing this goal requires methods for learning more explainable models, designing effective explanation interfaces, and understanding the psychologic requirements for effective explanations. The XAI developer teams are addressing the first two challenges by creating ML techniques and developing principles, strategies, and human-computer interaction techniques for generating effective explanations. Another XAI team is addressing the third challenge by summarizing, extending, and applying psychologic theories of explanation to help the XAI evaluator define a suitable evaluation framework, which the developer teams will use to test their systems. The XAI teams completed the first of this 4-year program in May 2018. In a series of ongoing evaluations, the developer teams are assessing how well their XAM systems’ explanations improve user understanding, user trust, and user task performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.