Molecular imprinting is a generic technology that allows for the introduction of sites of specific molecular affinity into otherwise homogeneous polymeric matrices. Commonly this technique has been shown to be effective when targeting small molecules of molecular weight <1500, while extending the technique to larger molecules such as proteins has proven difficult. A number of key inherent problems in protein imprinting have been identified, including permanent entrapment, poor mass transfer, denaturation, and heterogeneity in binding pocket affinity, which have been addressed using a variety of approaches. This review focuses on protein imprinting in its various forms, ranging from conventional bulk techniques to novel thin film and monolayer surface imprinting approaches.
The environmental fate of metal oxide particles as a function of size was assessed by comparing the behavior of CuO or ZnO nanoparticles (NPs) to that of the corresponding microparticles (MPs) in a sand matrix, with and without wheat (Triticum aestivum L.) growth. After 14 days of incubation in the planted sand, the CuO and ZnO NPs were increased from their nominal sizes of <50 nm and <100 nm, to ~317 nm and ~483 nm, respectively. Accordingly, the negative surface charge of colloids present in aqueous extracts from the sand amended with CuO (-27.0 mV) and ZnO (-10.0 mV) NPs was reduced by the presence of plants, to -19.8 mV and -6.0 mV, respectively. The surface charge of the MPs was not influenced by plants. Plant growth increased dissolution of NPs and MPs of both metal oxides in the sand from <0.3 mg/kg to about 1.0 mg/kg for the CuO products, and from ≤0.6 mg/kg to between 1.0 and 2.2 mg/kg for the Zn products. The NP or MP products reduced wheat root length by ~60% or ~50% from control levels; CuO was more toxic than ZnO. X-ray absorption spectroscopy (XAS) analysis showed that treatments with MPs or NPs of ZnO led to similar accumulations of Zn-phosphate species in the shoots, likely from dissolution of ZnO. Exposure to CuO NPs or MPs resulted in similar XAS spectra for Cu in the shoots explained by plant accumulation of both CuO and Cu(I)-sulfur complexes. These findings demonstrate the similarities between commercial NPs and MPs of CuO or ZnO in wheat plants, with greater root toxicity correlating with smaller particle size. Factors from the sand and the plant modified the aggregation or dissolution of both types of particles, thus, influencing their environmental fates.
Hydroponic plant growth studies indicate that silver nanoparticles (Ag NPs) are phytotoxic. In this work, the phytotoxicity of commercial Ag NPs (10 nm) was evaluated in a sand growth matrix. Both NPs and soluble Ag were recovered from water extracts of the sand after growth of plants challenged with the commercial product; the surface charge of the Ag NPs in this extract was slightly reduced compared to the stock NPs. The Ag NPs reduced the length of shoots and roots of wheat in a dose-dependent manner. Furthermore, 2.5 mg/kg of the NPs increased branching in the roots of wheat (Triticum aestivum L.), thereby affecting plant biomass. Micron-sized (bulk) Ag particles (2.5 mg/kg) as well as Ag ions (63 μg Ag/kg) equivalent to the amount of soluble Ag in planted sand with Ag NPs (2.5 mg/kg) did not affect plant growth compared to control. In contrast, higher levels of Ag ions (2.5 mg/kg) reduced plant growth to a similar extent as the Ag NPs. Accumulation of Ag was detected in the shoots, indicating an uptake and transport of the metal from the Ag NPs in the sand. Transmision electron microscopy indicated that Ag NPs were present in shoots of plants with roots exposed to the Ag NPs or high levels of Ag ions. Both of these treatments caused oxidative stress in roots, as indicated by accumulation of oxidized glutathione, and induced expression of a gene encoding a metallothionein involved in detoxification by metal ion sequestration. Our findings demonstrate the potential effects of environmental contamination by Ag NPs on the metabolism and growth of food crops in a solid matrix.
Partial monolayers of octadecyltrichlorosilane (OTS) were formed on mica under different reaction conditions in which the silanization temperature, time, and amount of water adsorbed on the mica substrates were varied. OTS surface coverage increased with silanization time for all samples; however, the amount and distribution of adsorbed OTS varied greatly under these different reaction conditions. AFM analysis showed that OTS formed two phases on mica silanized at 25°C: condensed "island-like" domains and expanded "liquid-like" domains. Partially dehydrated mica silanized at 9°C, however, displayed only condensed domains which were of smaller size compared to those on the 25°C samples. The lateral diffusion and aggregation of small condensed OTS domains to form larger aggregates was evident on all surfaces except the 25°C partially dehydrated mica. A uniform distribution of many small condensed domains surrounded by expanded OTS phases was seen instead. Extended annealing resulted in surface diffusion and aggregation of these domains and nucleation of new condensed domains from the surrounding expanded OTS phases. These observations are consistent with a deposition, diffusion, and aggregation model (DDA) which allows for activated diffusion; however, rigorous modeling is not presented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.