The sulfatase of Cephalosporium acremonium is regulated by exogenous sulfur compounds, repressed in cells in 0.02 M sulfate, and derepressed in 5 × 10−4 M sulfate. Organic sulfur sources, such as cysteine, homocysteine, and methionine, derepress the enzyme in varying degrees while the latter amino acid is also required for maximum synthesis of the antibiotics cephalosporin C and penicillin N. Sulfatase-repressed cells transferred from sulfate to methionine-containing medium produce a high level of these antibiotics in the culture medium and a proportionate derepression of the sulfatase. Cycloheximide inhibits sulfatase derepression in cultures transferred from sulfate to methionine medium while having negligible effect on antibiotic synthesis. Mutant cultures of C. acremonium, with an increased potential to synthesize sulfur-containing antibiotics, have decreased ability to degrade methionine for other cellular requirements and sulfatase derepression is proportionately increased. The sulfatase is thus regulated by the biosynthesis of cephalosporin C and penicillin N at the expense of sulfur-containing compounds required for other cellular processes.
The specific activities of two glutamate dehydrogenases (GDH), one requiring nicotinamide adenine dinucleotide (NAD) and the other specific for nicotinamide adenine dinucleotide phosphate (NADP), varied during growth of Schizophyllum commune as a function of the stage of the life cycle and the exogenous nitrogen source. During basidiospore germination on either glucose-NHa or glucose-glutamate medium, NADP-GDH increased six-to eightfold in specific activity, whereas NAD-GDH was depressed. During dikaryotic mycelial growth on either nitrogen source, the two GDH increased in a 1:1 ratio, whereas, during homokaryotic mycelial growth on glucose-NH3, NADP-GDH activity was depressed and NAD-GDH increased six-to eightfold. Homokaryotic mycelium cultured on glucose-glutamate medium yielded high NADP-GDH activities and normal NAD-GDH activities. Intracellular NH3 concentration and NADP-GDH activities were inversely related during spore germination and homokaryotic mycelium growth, whereas guanosine-5'-triphosphate (GTP) and L-glutamine specifically inhibited NAD-and NADP-GDH respectively in vitro. GTP inhibition was shown in extracts from cells at all stages of the life cycle. Basidiospore germling extracts contained an NADP-GDH essentially resistant to L-glutamine inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.