Carotenoids undergo a wide range of photochemical reactions in animal, plant, and microbial systems. In photosynthetic organisms, in addition to light harvesting, they perform an essential role in protecting against light-induced damage by quenching singlet oxygen, superoxide anion radicals, or triplet-state chlorophyll. We have determined the crystal structure of a water-soluble orange carotenoid protein (OCP) isolated from the cyanobacterium Arthrospira maxima at a resolution of 2.1 A. OCP forms a homodimer with one carotenoid molecule per monomer. The carotenoid binding site is lined by a striking number of methionine residues. The structure reveals several possible ways in which the protein environment influences the spectral properties of the pigment and provides insight into how the OCP carries out its putative functions in photoprotection.
The cytochromes that function in photosynthesis in cyanobacteria, algae, and higher plants have, like the other photosynthetic catalysts, been largely conserved in their structure and function during evolution. Cyanobacteria and algae contain cytochrome c6, which is not found in higher plants and which may enhance survival in their planktonic mode of life. Cyanobacteria and algae contain another cytochrome, low-potential c549, which is not found in higher plants. This cytochrome has a structural role in PSII and may contribute to anaerobic survival. There is a third unique cytochrome, cytochrome M, in the planktonic photosynthesizers, and its function is unknown. New evidence is appearing to indicate evolution of cytochrome interaction mechanisms during the evolution of photosynthesis. The ease of cytochrome gene manipulation in cyanobacteria and in Chlamydomonas reinhardtii now provides great advantages in understanding of photosynthesis. The solution of tertiary and quaternary structures of cytochromes and cytochrome complexes will provide structural and functional detail at atomic resolution.
Spinach plastocyanin and turnip cytochrome f have been covalently linked by using a water-soluble carbodiimide to yield an adduct of the two proteins. The redox potential of cytochrome f in the adduct was shifted by -20 mV relative to that of free cytochrome f, while the redox potential of plastocyanin in the adduct was the same as that of free plastocyanin. Solvent perturbation studies showed the degree of heme exposure in the adduct to be less than in free cytochrome f, indicating that plastocyanin was linked in such a way as to bury the exposed heme edge. Small changes were also observed when the resonance Raman spectrum of the adduct was compared to that of free cytochrome f. The adduct was incapable of interacting with or donating electrons to photosystem I. Peptide mapping and sequencing studies revealed two sites of linkage between the two proteins. In one site of linkage, Asp-44 of plastocyanin is covalently linked to Lys-187 of cytochrome f. This represents the first identification of a group on cytochrome f that is involved in the interaction with plastocyanin. The other site of linkage involves Glu-59 and/or Glu-60 of plastocyanin to as yet unidentified amino groups on cytochrome f. Euglena cytochrome c-552 could also be covalently linked to turnip cytochrome f, although with a lower efficiency than spinach plastocyanin. In contrast, a variety of cyanobacterial cytochrome c-553's and a cyanobacterial plastocyanin could not be covalently linked to turnip cytochrome f.
Cytochrome c(6) and cytochrome c-549 are small (89 and 130 amino acids, respectively) monoheme cytochromes that function in photosynthesis. They appear to have descended relatively recently from the same ancestral gene but have diverged to carry out very different functional roles, underscored by the large difference between their midpoint potentials of nearly 600 mV. We have determined the X-ray crystal structures of both proteins isolated from the cyanobacterium Arthrospira maxima. The two structures are remarkably similar, superimposing on backbone atoms with an rmsd of 0.7 A. Comparison of the two structures suggests that differences in solvent exposure of the heme and the electrostatic environment of the heme propionates, as well as in heme iron ligation, are the main determinants of midpoint potential in the two proteins. In addition, the crystal packing of both A. maxima cytochrome c-549 and cytochrome c(6) suggests that the proteins oligomerize. Finally, the cytochrome c-549 dimer we observe can be readily fit into the recently described model of cyanobacterial photosystem II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.