The repressors of temperate bacteriophages such as 434 and lambda control transcription by binding to a set of DNA operator sites. The different affinity of repressor for each of these sites ensures efficient regulation. High-resolution x-ray crystallography was used to study the DNA-binding domain of phage 434 repressor in complex with a synthetic DNA operator. The structure shows recognition of the operator by direct interactions with base pairs in the major groove, combined with the sequence-dependent ability of DNA to adopt the required conformation on binding repressor. In particular, a network of three-centered bifurcated hydrogen bonds among base pairs in the operator helps explain why 434 repressor prefers certain sites over others. These bonds, which stabilize the conformation of the bound DNA, can form only with certain sequences.
The multimeric membrane-tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here, we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide-binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact directly with Ypt1p to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This view of a multimeric membrane-tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.
The crystal structure of the reverse transcriptase (RT) from the type 1 human immunodeficiency virus has been determined at 3.2-A resolution. Comparison with complexes between RT and the polymerase inhibitor Nevirapine [Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. & Steitz, T. A. (1992) Science 256, 1783Science 256, -1790 and between RT and an oligonucleotide [Jacobo-Molina, A., Ding, J., Nanni, R., Clark, A. D., Lu, X., Tantillo, C., Williams, R. L., Kamer a heterodimer (p66/p5i), with domains labeled "fingers," "thumb," "palm," and "connection" in both subunits, and a ribonuclease H domain in the larger subunit only. The most striking difference between RT and both complex structures is the change in orientation of the p66 thumb (-33°rotation). Smaller shifts relative to the core of the molecule were also found in other domains, including the p66 fingers and palm, which contain the polymerase active site. Within the polymerase catalytic region itself, there are no rearrangements between RT and the RT/DNA complex. In RT/Nevirapine, the drug binds in the p66 palm near the polymerase active site, a region that is well-packed hydrophobic core in the unliganded enzyme. Room for the drug is provided by movement of a small ,B-sheet within the palm domain of the Nevirapine complex. The rearrangement within the palm and thumb, as well as domain shifts relative to the enzyme core, may prevent correct placement of the oligonucleotide substrate when the drug is bound.The reverse transcriptase (RT) from the type 1 human immunodeficiency virus type 1 (HIV-1) is a heterodimer composed of a 66-kDa subunit (p66) and a 51-kDa subunit (pSi) derived from p66 by proteolytic removal of the C-terminal domain. RT possesses both DNA polymerase activity, which ultimately produces double-stranded DNA from the viral genomic RNA, and a ribonuclease H (RNase H) activity, which cleaves the viral genome after it is copied. A crystal structure of RT complexed with the drug Nevirapine (RT/ Nevirapine), a non-nucleoside-analog polymerase inhibitor, has been reported (1, 2), as well as the structure (3) of a complex with an 18/19-mer oligonucleotide (RT/DNA). We report here the structure of the unliganded enzyme at 3.2-A resolution." By comparing it with RT/Nevirapine and RT/ DNA, we can begin to examine the mechanisms of drug and nucleic acid binding. These processes are found to involve changes in domain arrangement within the enzyme but no major repositioning of the polymerase catalytic residues. Differences between the unliganded enzyme and RT/Nevirapine suggest a possible mechanism for the action of nonnucleoside inhibitors. MATERIALS AND METHODSCrystallization. Expression and purification of HIV-1 (BH10 strain) RT Data Collection. RT crystals used for data collection were dialyzed against buffer containing 50% ammonium sulfate, 60 mM sodium phosphate (pH 6.8), and 20% (vol/vol) glycerol. Crystals were mounted in loops (6) made from nylon fibers and flash-cooled in the gaseous nitrogen stream from a modified c...
The structure of an N-terminal fragment of CD4 has been determined to 2.4 A resolution. It has two tightly abutting domains connected by a continuous beta strand. Both have the immunoglobulin fold, but domain 2 has a truncated beta barrel and a non-standard disulphide bond. The binding sites for monoclonal antibodies, class II major histocompatibility complex molecules, and human immunodeficiency virus gp120 can be mapped on the molecular surface.
The zinc metallopeptidase neurolysin is shown by x-ray crystallography to have large structural elements erected over the active site region that allow substrate access only through a deep narrow channel. This architecture accounts for specialization of this neuropeptidase to small bioactive peptide substrates without bulky secondary and tertiary structures. In addition, modeling studies indicate that the length of a substrate N-terminal to the site of hydrolysis is restricted to approximately 10 residues by the limited size of the active site cavity. Some structural elements of neurolysin, including a five-stranded -sheet and the two active site helices, are conserved with other metallopeptidases. The connecting loop regions of these elements, however, are much extended in neurolysin, and they, together with other open coil elements, line the active site cavity. These potentially flexible elements may account for the ability of the enzyme to cleave a variety of sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.