In this work we demonstrate the proof of principle of CT-based attenuation correction of 3D positron emission tomography (PET) data by using scans of bone and soft tissue equivalent phantoms and scans of humans. This method of attenuation correction is intended for use in a single scanner that combines volume-imaging (3D) PET with x-ray computed tomography (CT) for the purpose of providing accurately registered anatomical localization of structures seen in the PET image. The goal of this work is to determine if we can perform attenuation correction of the PET emission data using accurately aligned CT attenuation information. We discuss possible methods of calculating the PET attenuation map at 511 keV based on CT transmission information acquired from 40 keV through 140 keV. Data were acquired on separate CT and PET scanners and were aligned using standard image registration procedures. Results are presented on three of the attenuation calculation methods: segmentation, scaling, and our proposed hybrid segmentation/scaling method. The results are compared with those using the standard 3D PET attenuation correction method as a gold standard. We demonstrate the efficacy of our proposed hybrid method for converting the CT attenuation map from an effective CT photon energy of 70 keV to the PET photon energy of 511 keV. We conclude that using CT information is a feasible way to obtain attenuation correction factors for 3D PET.
This paper presents two new rebinning algorithms for the reconstruction of three-dimensional (3-D) positron emission tomography (PET) data. A rebinning algorithm is one that first sorts the 3-D data into an ordinary two-dimensional (2-D) data set containing one sinogram for each transaxial slice to be reconstructed; the 3-D image is then recovered by applying to each slice a 2-D reconstruction method such as filtered-backprojection. This approach allows a significant speedup of 3-D reconstruction, which is particularly useful for applications involving dynamic acquisitions or whole-body imaging. The first new algorithm is obtained by discretizing an exact analytical inversion formula. The second algorithm, called the Fourier rebinning algorithm (FORE), is approximate but allows an efficient implementation based on taking 2-D Fourier transforms of the data. This second algorithm was implemented and applied to data acquired with the new generation of PET systems and also to simulated data for a scanner with an 18 degrees axial aperture. The reconstructed images were compared to those obtained with the 3-D reprojection algorithm (3DRP) which is the standard "exact" 3-D filtered-backprojection method. Results demonstrate that FORE provides a reliable alternative to 3DRP, while at the same time achieving an order of magnitude reduction in processing time.
Time-of-flight (TOF) measurement capability promises to improve PET image quality. We characterized the physical and clinical PET performance of the first Biograph mCT TOF PET/CT scanner (Siemens Medical Solutions USA, Inc.) in comparison with its predecessor, the Biograph TruePoint TrueV. In particular, we defined the improvements with TOF. The physical performance was evaluated according to the National Electrical Manufacturers Association (NEMA) NU 2-2007 standard with additional measurements to specifically address the TOF capability. Patient data were analyzed to obtain the clinical performance of the scanner. As expected for the same size crystal detectors, a similar spatial resolution was measured on the mCT as on the TruePoint TrueV. The mCT demonstrated modestly higher sensitivity (increase by 19.7 ± 2.8%) and peak noise equivalent count rate (NECR) (increase by 15.5 ± 5.7%) with similar scatter fractions. The energy, time and spatial resolutions for a varying single count rate of up to 55 Mcps resulted in 11.5 ± 0.2% (FWHM), 527.5 ± 4.9 ps (FWHM) and 4.1 ± 0.0 mm (FWHM), respectively. With the addition of TOF, the mCT also produced substantially higher image contrast recovery and signal-to-noise ratios in a clinically-relevant phantom geometry. The benefits of TOF were clearly demonstrated in representative patient images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.