Background
Comprehensive molecular and cytogenetic profiling of acute lymphoblastic leukemia (ALL) is important and critical to the current standard of care for patients with B‐acute lymphoblastic leukemia (B‐ALL). Here we propose a rapid process for detecting gene fusions whereby FusionPlex RNA next‐generation sequencing (NGS) and DNA chromosome genomic array testing (CGAT) are combined for a more efficient approach in the management of patients with B‐ALL.
Methods
We performed RNA NGS and CGAT on 28 B‐ALL samples and, in four patients, compared fixed cell pellets to paired cryo‐preserved samples as a starting material to further assess the utility of cytogenetic fixed pellets for gene expression analysis.
Results
Among the fixed specimens, when using alternative techniques as references, including karyotype, fluorescence in situ hybridization, CGAT, and RT‐qPCR, fusions were detected by RNA NGS with 100% sensitivity and specificity. In the four paired fixed versus fresh cryopreserved samples, fusions were also 100% concordant. Four of the 28 patients showed mutations that were detected by RNA sequencing and three of four of these mutations had well‐known drug resistance implications.
Conclusions
We conclude that FusionPlex is a robust and reliable anchored multiplex RNA sequencing platform for use in the detection of fusions in both fresh cryopreserved and cytogenetic fixed pellets. Gene expression data could only be obtained from fresh samples and although limited variant data are available, critical hotspot variants can be determined in conjunction with the fusions.
To investigate aldo–keto reductase 1C3 (AKR1C3) expression in T and B acute lymphoblastic leukemia/lymphoma (ALL) patients. Three commercial antibodies were evaluated for AKR1C3 immunohistochemistry (IHC) staining performance: Polyclonal Thermofisher scientific (Clone#PA523667), rabbit monoclonal Abcam [EPR16726] (ab209899) and Sigma/Millipore anti-AKR1C3 antibody, mouse monoclonal, clone NP6.G6.A6, purified from hybridoma cell culture. Initial optimization was performed on cell line controls: HCT116 (negative control); genetically modified cell line HCT116 with AKR1C3 overexpression; Nalm and TF1 cell lines. Twenty normal bone marrows from archival B and T-ALL patient samples were subsequently examined. AKR1C3 expression levels in these samples were evaluated by immunohistochemistry, Protein Wes and quantitative RT-PCR. Sigma/Millipore Anti-AKR1C3 antibody (mouse monoclonal, clone NP6.G6.A6) showed higher specificity compared to rabbit polyclonal antibody by immunohistochemistry. H-score was used to quantify percent of nuclear immunoreactivity for AKR1C3 with varying disease involvement. T-ALL samples had a higher H-score (172–190) compared to B-ALL cases (H-score, 30–160). The AKR1C3 expression in peripheral blood by Protein Wes and RT-qPCR showed concordance in relapsed/refractory and/or minimal residual T-ALL cases. Sigma/Millipore Anti-AKR1C3 antibody and mouse monoclonal, clone NP6.G6.A6 can be used to aid in AKR1C expression of T-ALL and in cases of relapsed/refractory and/or minimal residual disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.