Historic fire return intervals in Artemesia tridentata (big sagebrush) ecosystems have been altered by livestock grazing, fire suppression, and other land management techniques resulting in ecological changes in these areas. Increases in abundance of woody vegetation may be causing declines in native herbaceous understory species. We examined the effects of prescribed fire on the morphology, abundance, and phenology of nine abundant forb (herbaceous dicot) species used selectively by Centrocercus urophasianus (Sage Grouse). In September 1997 prescribed fire was applied to four of eight randomly assigned 400‐ha A.t. wyomingensis (Wyoming big sagebrush) study plots at Hart Mountain National Antelope Refuge, Oregon. Livestock had not grazed experimental plots since 1991. Burning caused morphological changes such as significantly greater numbers of racemes and flowers per raceme in Astragalus malachus (shaggy milkvetch‐Legumoideae) (9 in burn vs. 6 in control; 23 in burn vs. 21 in control, respectively). Also, prescribed burning caused greater numbers of flowers in Phlox gracilis (microsteris‐Polemoniaceae) (57 vs. 13), greater numbers of umbels and umbelletts in Lomatium nevadense (Nevada desert parsley‐Umbellifereae) (4 vs. 2 and 59 vs. 31, respectively), greater numbers of flower heads in Crepis modocensis (Modoc hawksbeard‐Compositae) (32 vs. 21), and greater number of flowers/cm3 in Phlox longifolia (longleaf phlox‐Polemoniaceae) (0.11 vs. 0.06). Crown volume of Crepis modocensis (7,085 vs. 4,179 cm3) and Astragalus malachus (2,854 vs. 1,761 cm3) plants was greater in burned plots than control plots. However, burning resulted in a smaller crown area of Antennaria dimorpha (low pussytoes‐Compositae) (20 vs. 37 cm2). Phenology and time of flowering were also affected by fire. The period of active growth for each species was extended later into the summer in burned plots ( p < 0.01). In addition, Crepis modocensis and Lomatium nevadense flowered 12 to 14 days earlier in burned plots. Fire had no effect on frequency, density, and relative abundance of seven of the nine studied species. Fire reduced the frequency and relative abundance of A. dimorpha and Phlox longifolia and reduced the density of A. dimorpha.
Abstract. Recent policy has focused on prevention of wildfire in the sagebrush steppe in an effort to protect habitat for the greater sage grouse (Centrocercus urophasianus). Historically, fire return intervals in Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) ecosystems were 50-100 yr or more, but invasive species, climate change, and a legacy of intensive grazing practices have led to degraded rangeland condition, altered fire regimes and fire effects, and declines in sagebrush cover. Little is known about the long-term impacts of fire in this ecosystem in areas where grazing pressure has been removed, few invasive species exist, and fire return intervals are maintained. In this study, we quantified vegetation composition prior to prescribed burning, 1 year following fire, and 17 years after fire in a native-dominated Wyoming big sagebrush ecosystem at Hart Mountain National Antelope Refuge, Oregon, United States. Seventeen years following fire, the ecosystem was dominated by native herbaceous vegetation, with 8.3% cover of broad-leaved forbs and bunchgrasses in the understory, compared to just 3.8% cover of native herbaceous vegetation in unburned controls. Invasive annual grass cover ranged from 0.2% to 8.4% across all treatments and years (P = 0.56). One year following fire, the distance from a randomly located point and the nearest mature sagebrush was 16.6 m, but by 17 years after the fire, that distance had decreased to 2.5 m. Seventeen years after fires, shrub cover was 0.4-4% in burned plots compared to 13-24% in unburned controls. Collectively, these data demonstrate that good condition ungrazed Wyoming big sagebrush plant communities exhibited resilience following fire and maintained a native-dominated mosaic of shrubs, bunchgrasses, and forbs. Further, unburned control plots were dominated by woody vegetation and exhibited losses in herbaceous understory, possibly indicating that they are outside of their natural fire return interval. Our results illustrate that management of all habitat components, including natural disturbance and a mosaic of successional stages, is important for persistent resilience and that suppression of all fires in the sagebrush steppe may create long-term losses of heterogeneity in good condition Wyoming big sagebrush ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.