Summary We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.
2 SUMMARYWe previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.
We examine the capabilities of a unified, multitask framework for three information extraction tasks: named entity recognition, relation extraction, and event extraction. Our framework (called DYGIE++) accomplishes all tasks by enumerating, refining, and scoring text spans designed to capture local (withinsentence) and global (cross-sentence) context. Our framework achieves state-of-theart results across all tasks, on four datasets from a variety of domains. We perform experiments comparing different techniques to construct span representations. Contextualized embeddings like BERT perform well at capturing relationships among entities in the same or adjacent sentences, while dynamic span graph updates model long-range crosssentence relationships. For instance, propagating span representations via predicted coreference links can enable the model to disambiguate challenging entity mentions. Our code is publicly available at https://github. com/dwadden/dygiepp and can be easily adapted for new tasks or datasets.
We introduce scientific claim verification, a new task to select abstracts from the research literature containing evidence that SUP-PORTS or REFUTES a given scientific claim, and to identify rationales justifying each decision. To study this task, we construct SCI-FACT, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts annotated with labels and rationales. We develop baseline models for SCIFACT, and demonstrate that simple domain adaptation techniques substantially improve performance compared to models trained on Wikipedia or political news. We show that our system is able to verify claims related to COVID-19 by identifying evidence from the CORD-19 corpus. Our experiments indicate that SCIFACT will provide a challenging testbed for the development of new systems designed to retrieve and reason over corpora containing specialized domain knowledge. Data and code for this new task are publicly available at https:// github.com/allenai/scifact. A leaderboard and COVID-19 fact-checking demo are available at https://scifact.apps. allenai.org. * Work performed during internship with the Allen Institute for Artificial Intelligence.More severe COVID-19 infection is associated with higher mean troponin (SMD 0.53, 95% CI 0.30 to 0.75, p < 0.001) Decision: SUPPORTS Claim Fact-checker Rationale CorpusCardiac injury is common in critical cases of COVID-19.Claim 1: Lopinavir / ritonavir have exhibited favorable clinical responses when used as a treatment for coronavirus. Supports: . . . Interestingly, after lopinavir/ritonavir (Kaletra, AbbVie) was administered, β-coronavirus viral loads significantly decreased and no or little coronavirus titers were observed. Refutes:The focused drug repurposing of known approved drugs (such as lopinavir/ritonavir) has been reported failed for curing SARS-CoV-2 infected patients. It is urgent to generate new chemical entities against this virus . . . Claim 2:The coronavirus cannot thrive in warmer climates. Supports: ...most outbreaks display a pattern of clustering in relatively cool and dry areas...This is because the environment can mediate human-to-human transmission of SARS-CoV-2, and unsuitable climates can cause the virus to destabilize quickly... Refutes: ...significant cases in the coming months are likely to occur in more humid (warmer) climates, irrespective of the climate-dependence of transmission and that summer temperatures will not substrantially limit pandemic growth.
The application of RNA interference (RNAi) to mammalian cells has provided the means to perform phenotypic screens to determine the functions of genes. Although RNAi has revolutionized loss-of-function genetic experiments, it has been difficult to systematically assess the prevalence and consequences of off-target effects. The Connectivity Map (CMAP) represents an unprecedented resource to study the gene expression consequences of expressing short hairpin RNAs (shRNAs). Analysis of signatures for over 13,000 shRNAs applied in 9 cell lines revealed that microRNA (miRNA)-like off-target effects of RNAi are far stronger and more pervasive than generally appreciated. We show that mitigating off-target effects is feasible in these datasets via computational methodologies to produce a consensus gene signature (CGS). In addition, we compared RNAi technology to clustered regularly interspaced short palindromic repeat (CRISPR)-based knockout by analysis of 373 single guide RNAs (sgRNAs) in 6 cells lines and show that the on-target efficacies are comparable, but CRISPR technology is far less susceptible to systematic off-target effects. These results will help guide the proper use and analysis of loss-of-function reagents for the determination of gene function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.