We study the problem of understanding objects in detail, intended as recognizing a wide array of fine-grained object attributes. To this end, we introduce a dataset of 7,413 airplanes annotated in detail with parts and their attributes, leveraging images donated by airplane spotters and crowdsourcing both the design and collection of the detailed annotations. We provide a number of insights that should help researchers interested in designing fine-grained datasets for other basic level categories. We show that the collected data can be used to study the relation between part detection and attribute prediction by diagnosing the performance of classifiers that pool information from different parts of an object. We note that the prediction of certain attributes can benefit substantially from accurate part detection. We also show that, differently from previous results in object detection, employing a large number of part templates can improve detection accuracy at the expenses of detection speed. We finally propose a coarse-to-fine approach to speed up detection through a hierarchical cascade algorithm. 1 We already introduced a superset of these aircraft images for FGcomp 2013 [28], but without detailed annotations.
We investigated several sensory and cognitive determinants of colour constancy across 40 illumination hues. In the first experiment, we measured colour naming for the illumination and for the colour induced by the illumination on the colorimetric grey. Results confirmed that the induced colours are approximately complementary to the colour of the illumination. In the second experiment, we measured colour constancy using achromatic adjustments. Average colour constancy was perfect under the blue daylight illumination and decreased in colour directions away from the blue daylight illumination due to undershooting and a strong blue bias. Apart from this blue bias, colour constancy was not related to illumination discrimination and to chromatic detection measured previously with the same setup and stimuli. We also observed a strong negative relationship between the degree of colour constancy and the consensus of naming the illumination colour. Constancy coincided with a low naming consensus, in particular because bluish illumination colours were sometimes seen as achromatic. Blue bias and category consensus alone explained >68%, and all determinants together explained >94% of the variance of achromatic adjustments. These findings suggest that colour constancy is optimised for blue daylight.
To assess how well a brain MRI lesion segmentation algorithm trained at one institution performed at another institution, and to assess the effect of multi-institutional training datasets for mitigating performance loss. Materials and Methods: In this retrospective study, a three-dimensional U-Net for brain MRI abnormality segmentation was trained on data from 293 patients from one institution (IN1) (median age, 54 years; 165 women; patients treated between 2008 and 2018) and tested on data from 51 patients from a second institution (IN2) (median age, 46 years; 27 women; patients treated between 2003 and 2019). The model was then trained on additional data from various sources: (a) 285 multi-institution brain tumor segmentations, (b) 198 IN2 brain tumor segmentations, and (c) 34 IN2 lesion segmentations from various brain pathologic conditions. All trained models were tested on IN1 and external IN2 test datasets, assessing segmentation performance using Dice coefficients. Results: The U-Net accurately segmented brain MRI lesions across various pathologic conditions. Performance was lower when tested at an external institution (median Dice score, 0.70 [IN2] vs 0.76 [IN1]). Addition of 483 training cases of a single pathologic condition, including from IN2, did not raise performance (median Dice score, 0.72; P = .10). Addition of IN2 training data with heterogeneous pathologic features, representing only 10% (34 of 329) of total training data, increased performance to baseline (Dice score, 0.77; P , .001). This final model produced total lesion volumes with a high correlation to the reference standard (Spearman r = 0.98). Conclusion: For brain MRI lesion segmentation, adding a modest amount of relevant training data from an external institution to a previously trained model supported successful application of the model to this external institution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.