IntroductionThe timely provision of critical care to hospitalised patients at risk for cardiopulmonary arrest is contingent upon identification and referral by frontline providers. Current approaches require improvement. In a single-centre study, we developed the Bedside Paediatric Early Warning System (Bedside PEWS) score to identify patients at risk. The objective of this study was to validate the Bedside PEWS score in a large patient population at multiple hospitals.MethodsWe performed an international, multicentre, case-control study of children admitted to hospital inpatient units with no limitations on care. Case patients had experienced a clinical deterioration event involving either an immediate call to a resuscitation team or urgent admission to a paediatric intensive care unit. Control patients had no events. The scores ranged from 0 to 26 and were assessed in the 24 hours prior to the clinical deterioration event. Score performance was assessed using the area under the receiver operating characteristic (AUCROC) curve by comparison with the retrospective rating of nurses and the temporal progression of scores in case patients.ResultsA total of 2,074 patients were evaluated at 4 participating hospitals. The median (interquartile range) maximum Bedside PEWS scores for the 12 hours ending 1 hour before the clinical deterioration event were 8 (5 to 12) in case patients and 2 (1 to 4) in control patients (P < 0.0001). The AUCROC curve (95% confidence interval) was 0.87 (0.85 to 0.89). In case patients, mean scores were 5.3 at 20 to 24 hours and 8.4 at 0 to 4 hours before the event (P < 0.0001). The AUCROC curve (95% CI) of the retrospective nurse ratings was 0.83 (0.81 to 0.86). This was significantly lower than that of the Bedside PEWS score (P < 0.0001).ConclusionsThe Bedside PEWS score identified children at risk for cardiopulmonary arrest. Scores were elevated and continued to increase in the 24 hours before the clinical deterioration event. Prospective clinical evaluation is needed to determine whether this score will improve the quality of care and patient outcomes.
clinicaltrials.gov Identifier: NCT01260831.
The paediatric LTV population has expanded significantly over 15 years. Future planning of paediatric hospital and community services, as well as adult services, must take into account the needs of this growing population.
BackgroundSleep disordered breathing (SDB) can lead to daytime sleepiness, growth failure and developmental delay in children. Polysomnography (PSG), the gold standard to diagnose SDB, is a highly resource-intensive test, confined to the sleep laboratory.AimTo combine the blood oxygen saturation (SpO2) characterization and cardiac modulation, quantified by pulse rate variability (PRV), to identify children with SDB using the Phone Oximeter, a device integrating a pulse oximeter with a smartphone.MethodsFollowing ethics approval and informed consent, 160 children referred to British Columbia Children's Hospital for overnight PSG were recruited. A second pulse oximeter sensor applied to the finger adjacent to the one used for standard PSG was attached to the Phone Oximeter to record overnight pulse oximetry (SpO2 and photoplethysmogram (PPG)) alongside the PSG.ResultsWe studied 146 children through the analysis of the SpO2 pattern, and PRV as an estimate of heart rate variability calculated from the PPG. SpO2 variability and SpO2 spectral power at low frequency, was significantly higher in children with SDB due to the modulation provoked by airway obstruction during sleep (p-value ). PRV analysis reflected a significant augmentation of sympathetic activity provoked by intermittent hypoxia in SDB children. A linear classifier was trained with the most discriminating features to identify children with SDB. The classifier was validated with internal and external cross-validation, providing a high negative predictive value (92.6%) and a good balance between sensitivity (88.4%) and specificity (83.6%). Combining SpO2 and PRV analysis improved the classification performance, providing an area under the receiver operating characteristic curve of 88%, beyond the 82% achieved using SpO2 analysis alone.ConclusionsThese results demonstrate that the implementation of this algorithm in the Phone Oximeter will provide an improved portable, at-home screening tool, with the capability of monitoring patients over multiple nights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.