Tens of thousands of species are threatened with extinction as a result of human activities. Here we explore how the extinction risks of terrestrial mammals and birds might change in the next 50 years. Future population growth and economic development are forecasted to impose unprecedented levels of extinction risk on many more species worldwide, especially the large mammals of tropical Africa, Asia and South America. Yet these threats are not inevitable. Proactive international efforts to increase crop yields, minimize land clearing and habitat fragmentation, and protect natural lands could increase food security in developing nations and preserve much of Earth's remaining biodiversity.
Expansion of land area used for agriculture is a leading cause of biodiversity loss and greenhouse gas emissions, particularly in the tropics. One potential way to reduce these impacts is to increase food production per unit area (yield) on existing farmland, so as to minimize farmland area and to spare land for habitat conservation or restoration. There is now widespread evidence that such a strategy could benefit a large proportion of wild species, provided that spared land is conserved as natural habitat (1). However, the scope for yield growth to spare land by lowering food prices and, hence, incentives for clearance (“passive” land sparing) can be undermined if lower prices stimulate demand and if higher yields raise profits, encouraging agricultural expansion and increasing the opportunity cost of conservation (2, 3). We offer a first description of four categories of “active” land-sparing mechanisms that could overcome these rebound effects by linking yield increases with habitat protection or restoration (table S1). The effectiveness, limitations, and potential for unintended consequences of these mechanisms have yet to be systematically tested, but in each case, we describe real-world interventions that illustrate how intentional links between yield increases and land sparing might be developed
General rightsThis document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms ` Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global extinctions of Late Quaternary megafauna AbstractDebate over the late Quaternary megafaunal extinctions has focussed on whether human colonisation or climatic changes were more important, with few extinctions being unambiguously attributable to either. Most analyses have been geographically or taxonomically restricted and the few quantitative global analyses have been limited by coarse temporal resolution or overly simplified climate reconstructions or proxies. We present a global analysis of the causes of these extinctions which uses high-resolution climate reconstructions and explicitly investigates the sensitivity of our results to uncertainty in the palaeological record. Our results show that human colonisation was the dominant driver of megafaunal extinction across the world but that climatic factors were also important. We identify the geographic regions where future research is likely to have the most impact, with our models reliably predicting extinctions across most of the world, with the notable exception of mainland Asia where we fail to explain the apparently low rate of extinction found in the fossil record. Our results are highly robust to uncertainties in the palaeological record, and our main conclusions are unlikely to change qualitatively following new data on extinction or human colonisation dates.
Balancing the production of food, particularly meat, with preserving biodiversity and maintaining ecosystem services is a major societal challenge. Research into the contrasting strategies of land sparing and land sharing has suggested that land sparing-combining high-yield agriculture with the protection or restoration of natural habitats on nonfarmed land-will have lower environmental impacts than other strategies. Ecosystems with long histories of habitat disturbance, however, could be resilient to low-yield agriculture and thus fare better under land sharing. Using a wider suite of species (birds, dung beetles and trees) and a wider range of livestock-production systems than previous studies, we investigated the probable impacts of different land-use strategies on biodiversity and aboveground carbon stocks in the Yucatán Peninsula, Mexico-a region with a long history of habitat disturbance. By modelling the production of multiple products from interdependent land uses, we found that land sparing would allow larger estimated populations of most species and larger carbon stocks to persist than would land sharing or any intermediate strategy. This result held across all agricultural production targets despite the history of disturbance and despite species richness in low- and medium-yielding agriculture being not much lower than that in natural habitats. This highlights the importance, in evaluating the biodiversity impacts of land use, of measuring population densities of individual species, rather than simple species richness. The benefits of land sparing for both biodiversity and carbon storage suggest that safeguarding natural habitats for biodiversity protection and carbon storage alongside promoting areas of high-yield cattle production would be desirable. However, delivering such landscapes will probably require the explicit linkage of livestock yield increases with habitat protection or restoration, as well as a deeper understanding of the long-term sustainability of yields, and research into how other societal outcomes vary across land-use strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.