The fluoroquinolone antibiotic ciprofloxacin has been encapsulated into large unilamellar vesicles (LUV) at efficiencies approaching 100%. Drug accumulation proceeded in response to a transmembrane gradient of methylammonium sulfate and occurred concomitantly with the efflux of methylamine. A mechanism for the encapsulation process is described. LUV composed of dipalmitoylphosphatidylcholine-cholesterol (DPPC/chol), distearoylphosphatidylcholine-cholesterol (DSPC/chol), or sphingomyelin-cholesterol (SM/chol) increased the circulation lifetime of ciprofloxacin after intravenous (i.v.) administration by >15-fold. The retention of ciprofloxacin in liposomes in the circulation decreased in the sequence SM/chol > DSPC/chol > DPPC/chol. Increased circulation lifetimes were associated with enhanced delivery of the drug to the livers, spleens, kidneys, and lungs of mice. Encapsulation of ciprofloxacin also conferred significant increases in the longevity of the drug in the plasma after intraperitoneal administration and in the lungs after intratracheal administration in comparison to free ciprofloxacin. The efficacy of a single i.v. administration of an SM/chol formulation of ciprofloxacin was measured in a Salmonella typhimurium infection model. At 20 mg of ciprofloxacin per kg of body weight, the encapsulated formulation resulted in 103- to 104-fold fewer viable bacteria in the livers and spleens of infected mice than was observed for animals treated with free ciprofloxacin. These results show the utility of liposomal encapsulation of ciprofloxacin in improving the pharmacokinetics, biodistribution, and antibacterial efficacy of the antibiotic. In addition, these formulations are well suited for i.v., intraperitoneal, and intratracheal or aerosol administration.
Cell membranes are relatively impermeable to the antibiotic gentamicin, a factor that, along with the toxicity of gentamicin, precludes its use against many important intracellular bacterial infections. Liposomal encapsulation of this drug was used in order to achieve intracellular antibiotic delivery and therefore increase the drug's therapeutic activity against intracellular pathogens. Gentamicin encapsulation in several dipalmitoylphosphatidylcholine (DPPC) and pH-sensitive dioleoylphosphatidylethanolamine (DOPE)-based carrier systems was characterized. To systematically test the antibacterial efficacies of these formulations, a tissue culture assay system was developed wherein murine macrophage-like J774A.1 cells were infected with bacteria and were then treated with encapsulated drug. Of these formulations, DOPE-N-succinyl-DOPE and DOPE-Nglutaryl-DOPE (70:30;mol:mol) containing small amounts of polyethyleneglycol-ceramide showed appreciable antibacterial activities, killing greater than 75% of intracellular vacuole-resident wild-type Salmonella typhimurium compared to the level of killing of the control formulations. These formulations also efficiently eliminated intracellular infections caused by a recombinant hemolysin-expressing S. typhimurium strain and a Listeria monocytogenes strain, both of which escape the vacuole and reside in the cytoplasm. Control non-pHsensitive liposomal formulations of gentamicin had poor antibacterial activities. A fluorescence resonance energy transfer assay indicated that the efficacious formulations undergo a pH-dependent lipid mixing and fusion event. Intracellular delivery of the fluorescent molecules encapsulated in these formulations was confirmed by confocal fluorescence microscopy and was shown to be dependent on endosomal acidification. This work shows that encapsulation of membrane-impermeative antibiotics in appropriately designed lipid-based delivery systems can enable their use in treating intracellular infections and details the development of a general assay for testing the intracellular delivery of encapsulated drug formulations.
Encapsulation of gentamicin in liposomes can be used to achieve intracellular delivery and broaden the clinical utility of this drug. We have previously described a novel, rationally designed, pH-sensitive liposomal carrier for gentamicin that has superior in vitro efficacy against intracellular infections compared to the efficacies of both free gentamicin and non-pH-sensitive liposomal controls. This liposomal carrier demonstrated pH-sensitive fusion that was dependent on the presence of unsaturated phosphatidylethanolamine (PE) and the pH-sensitive lipid N-succinyldioleoyl-PE. The pharmacokinetics and biodistribution of the free and liposomal gentamicin were examined in mice bearing a systemic Salmonella enterica serovar Typhimurium infection. Encapsulation of gentamicin in pH-sensitive liposomes significantly increased the concentrations of the drug in plasma compared to those of free gentamicin. Furthermore, the levels of accumulation of drug in the infected liver and spleen were increased by 153-and 437-fold, respectively, as a result of liposomal encapsulation. The increased accumulation of gentamicin in the liver and spleen effected by liposomal delivery was associated with 10 4 -fold greater antibacterial activity than that associated with free gentamicin in a murine salmonellosis model. These pH-sensitive liposomal antibiotic carriers with enhanced in vitro activity could be used to improve both in vivo intracellular drug delivery and biological activity.
Chlorhexidine has been shown to cause the release of cellular constituents from phosphorus‐32 labelled cells of Micrococcus lysodeikticus suspended in distilled water or in phosphate buffer. An initial rapid release is followed by a slower secondary release. This secondary release is inhibited by high concentrations of chlorhexidine. The release depends on the chlorhexidine to cell ratio and not on the absolute bactericide concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.