BACKGROUND & AIMS Although widely used, little information exists on the validity of using hospital administrative data to code acute pancreatitis (AP). We sought to determine if discharge diagnosis codes accurately identify patients whose clinical course met the standard for AP diagnosis. METHODS We analyzed data from 401 unique patients admitted through the emergency department who received a primary inpatient discharge diagnosis of AP at 2 University of Pittsburgh Medical Center hospitals in the years 2000, 2002, and 2005. Each patient was matched with a control patient who was admitted with abdominal pain and then discharged without a diagnosis of AP. Patients were matched based on demographics, testing for serum levels of pancreatic enzymes, year of visit to the emergency department, admission to the intensive care unit, and performance of abdominal computed tomography scan. The standard used to diagnose AP was the presence of 2 of 3 features (abdominal pain, ≥3-fold increase in serum levels of pancreatic enzymes, and positive results from imaging analysis). RESULTS The median age of AP cases was 53 years (interquartile range, 41.5–67 years); 47.1% were male, 85% were white. The most common etiologies were biliary (33.4%), alcohol-associated (16.2%), and idiopathic (24.2%). Serum levels of pancreatic enzymes were increased by any amount, and by ≥3-fold, in 95.3% and 68.6% of patients diagnosed with AP and in 16.2% and 2.2% of controls, respectively. The standard for diagnosis of AP was met in 80% of cases diagnosed with this disorder; they had no history of pancreatitis. The sensitivity, specificity, and positive and negative predictive values of the AP diagnosis code were 96%, 85%, 80%, and 98%, respectively. CONCLUSIONS Approximately 1 of 5 patients diagnosed with AP upon discharge from the hospital do not meet the guidelines for diagnosis of this disorder. Efforts should be made to more consistently use guidelines for AP diagnosis.
Previous studies have demonstrated that ciliary neurotrophic factor (CNTF) enhances survival and process outgrowth from magnocellular neurons in the paraventricular (PVN) and the supraoptic (SON) nuclei. However, the mechanisms by which CNTF facilitates these processes remain to be determined. Therefore, the aim of this study was to identify the immediate signal transduction events that occur within the rat SON following administration of exogenous rat recombinant CNTF (rrCNTF) and to determine the contribution of those intracellular signaling pathway(s) to neuronal survival and process outgrowth, respectively. Immunohistochemical and Western blot analysis demonstrated that axonal injury and acute unilateral pressure injection of 100 ng/μl of rrCNTF directly over the rat SON resulted in a rapid and transient increase in phosphorylated-STAT3 (pSTAT3) in astrocytes but not neurons in the SON in vivo. Utilizing rat hypothalamic organotypic explant cultures, we then demonstrated that administration of 25 ng/ml rrCNTF for 14 days significantly increased the survival and process outgrowth of OT magnocellular neurons. In addition, pharmacological inhibition of the Jak-STAT pathway via AG490 and cucurbitacin I significantly reduced the survival of OT magnocellular neurons in the SON and PVN; however, the contribution of the Jak-STAT pathway to CNTF-mediated process outgrowth remains to be determined. Together, these data indicate that CNTF-induced survival of OT magnocellular neurons is mediated indirectly through astrocytes via the Jak-STAT signaling pathway.
The transcriptional coactivator p300 is essential for normal embryonic development and cellular differentiation. We have been studying the role of p300 in the transcription of a variety of genes, and we became interested in the role of this coactivator in the transcription of genes important in breast epithelial cell biology. From MCF-10A cells (spontaneously immortalized, nontransformed human breast epithelial cells), we developed cell lines that stably overexpress p300. These p300-overexpressing cells displayed reduced adhesion to culture dishes and were found to secrete an extracellular matrix deficient in laminin-5. Laminin-5 is the major extracellular matrix component produced by breast epithelium. Immunofluorescence studies, as well as experiments using normal matrix, confirmed that the decreased adhesion of p300-overexpressing cells is due to laminin-5-deficient extracellular matrix and not due to loss of laminin-5 receptors. Northern blots revealed markedly decreased levels of expression of two of the genes (designated LAMA3 and LAMC2) encoding the ␣3 and ␥2 chains of the laminin-5 heterotrimer in the cells that overexpress p300, whereas LAMB3 mRNA, encoding the third or 3 chain of laminin-5, was not markedly reduced. Transient transfection experiments with a vector containing a murine LAMA3 promoter demonstrate that overexpressing p300 down-regulates the LAMA3 promoter. In summary, overexpression of p300 leads to down-regulation of laminin-5 production in breast epithelial cells, resulting in decreased adhesion.
Ciliary neurotrophic factor (CNTF) is expressed by glial cells at multiple levels of the magnocellular neurosecretory system (MNS). CNTF is present in astrocytes in the hypothalamic supraoptic nucleus (SON) as well as in perivascular cells in the neurohypophysis, and a several fold increase in CNTF immunoreactivity occurs in the SON following either axotomy of magnocellular neurons or during axonal sprouting by intact magnocellular neurons. CNTF also promotes survival and stimulates process outgrowth from magnocellular neurons in vitro. While these findings suggest that CNTF may act as a growth factor in support of neuronal plasticity in the MNS, little is known regarding possible expression of receptors for CNTF in the MNS. We have therefore used immunocytochemistry and in situ hybridization to examine the expression of CNTF receptor alpha (CNTFRα) in the rat MNS. Robust immunoreactivity for CNTFRα was observed associated with oxytocinergic and vasopressinergic neurons distributed throughout the SON. Astrocytes located within the ventral glial lamina (VGL) of the SON were also immunoreactive for CNTFRα. Robust hybridization of an anti-sense [ 35 S]-cRNA probe to CNTFRα mRNA was observed throughout the SON, while binding of a control sense probe was much lower. Grains were found clustered predominantly over neuronal somata, indicative of expression by magnocellular neurons within the SON. We next examined changes in expression of CNTFRα mRNA by magnocellular neurons 7 days following unilateral transection of the hypothalamo-neurohypophysial tract. The level of CNTFRα mRNA was increased 32% (compared to age-matched intact controls; p<.05) in magnocellular neurons in the SON contralateral to the lesion, which are undergoing extensive collateral axonal sprouting, but was unchanged in axotomized magnocellular neurons in the SON ipsilateral to the lesion. These findings suggest that CNTF produced by MNS glia and acting via CNTFRα may exert neurotrophic effects on magnocellular neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.