Histone phosphorylation influences transcription, chromosome condensation, DNA repair and apoptosis. Previously, we showed that histone H3 Ser10 phosphorylation (pSer10) by the yeast Snf1 kinase regulates INO1 gene activation in part via Gcn5/SAGA complex-mediated Lys14 acetylation (acLys14). How such chromatin modification patterns develop is largely unexplored. Here we examine the mechanisms surrounding pSer10 at INO1, and at GAL1, which herein is identified as a new regulatory target of Snf1/pSer10. Snf1 behaves as a classic coactivator in its recruitment by DNA-bound activators, and in its role in modifying histones and recruiting TATA-binding protein (TBP). However, one important difference in Snf1 function in vivo at these promoters is that SAGA recruitment at INO1 requires histone phosphorylation via Snf1, whereas at GAL1, SAGA recruitment is independent of histone phosphorylation. In addition, the GAL1 activator physically interacts with both Snf1 and SAGA, whereas the INO1 activator interacts only with Snf1. Thus, at INO1, pSer10's role in recruiting SAGA may substitute for recruitment by DNA-bound activator. Our results emphasize that histone modifications share general functions between promoters, but also acquire distinct roles tailored for promoter-specific requirements.
SIRT6 is critical for activating transcription of Nuclear factor (erythroid-derived 2)-like 2 (NRF2) responsive genes during oxidative stress. However, while the mechanism of SIRT6-mediated silencing is well understood, the mechanism of SIRT6-mediated transcriptional activation is unknown. Here, we employed SIRT6 separation of function mutants to reveal that SIRT6 mono-ADP-ribosylation activity is required for transcriptional activation. We demonstrate that SIRT6 mono-ADP-ribosylation of BAF170, a subunit of BAF chromatin remodeling complex, is critical for activation of a subset of NRF2 responsive genes upon oxidative stress. We show that SIRT6 recruits BAF170 to enhancer region of the Heme oxygenase-1 locus and promotes recruitment of RNA polymerase II. Furthermore, SIRT6 mediates the formation of the active chromatin 10-kb loop at the HO-1 locus, which is absent in SIRT6 deficient tissue. These results provide a novel mechanism for SIRT6-mediated transcriptional activation, where SIRT6 mono-ADP-ribosylates and recruits chromatin remodeling proteins to mediate the formation of active chromatin loop.
When transcribed DNA is damaged, the transcription and DNA repair machineries must interact to ensure successful DNA repair. The mechanisms of this interaction in the context of chromatin are still being elucidated. Here we show that the SIRT6 protein enhances non-homologous end joining (NHEJ) DNA repair by transiently repressing transcription. Specifically, SIRT6 mono-ADP ribosylates the lysine demethylase JHDM1A/KDM2A leading to rapid displacement of KDM2A from chromatin, resulting in increased H3K36me2 levels. Furthermore, we found that through HP1α binding, H3K36me2 promotes subsequent H3K9 tri-methylation. This results in transient suppression of transcription initiation by RNA polymerase II and recruitment of NHEJ factors to DNA double-stranded breaks (DSBs). These data reveal a mechanism where SIRT6 mediates a crosstalk between transcription and DNA repair machineries to promote DNA repair. SIRT6 functions in multiple pathways related to aging, and its novel function coordinating DNA repair and transcription is yet another way by which SIRT6 promotes genome stability and longevity.
Rapid epithelial repair (restitution) after injury is required to maintain barrier function of the gastrointestinal mucosa and skin and is thought to be a highly ATP-dependent process that would be inhibited under hypoxic conditions. However, little is known about the metabolic pathways required for restitution. Thus, this study was undertaken to evaluate, in vitro, the role of oxidative respiration and glycolysis in restitution after injury. To this end, restitution of the bullfrog gastric mucosa was evaluated under the following conditions: 1) blockade of mitochondrial respiration; 2) blockade of glycolysis; or 3) absence of glucose. The extent of mucosal repair after injury was evaluated by electrophysiology and morphology. Cell migration, repolarization, and the formation of tight junctions after injury occurred during blockade of mitochondrial respiration, whereas the recovery of mucosal barrier function did not. In contrast, glycolytic inhibition completely blocked all aspects of restitution by inhibiting the migration of surface epithelial cells. Restitution occurred in tissues incubated with glucose-free solutions, suggesting that cells contain sufficient glucose (glycogen) to drive glycolysis for many hours. Our results demonstrate that the glycolytic pathway is essential for restitution after injury in the bullfrog gastric mucosa and that all but complete repair of barrier function occurs in the absence of mitochondrial respiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.