In the present computing landscape, interpreters are in use in a wide range of systems. Recent trends in consumer electronics have created a new category of portable, lightweight software applications. Typically, these applications have fast development cycles and short life spans. They run on a wide range of systems and are deployed in a target independent bytecode format over Internet and cellular networks. Their authors are untrusted third-party vendors, and they are executed in secure managed runtimes or virtual machines. Furthermore, due to security policies or development time constraints, these virtual machines often lack just-in-time compilers and rely on interpreted execution. At the other end of the spectrum, interpreters are also a reality in the field of high-performance computations because of the flexibility they provide.The main performance penalty in interpreters arises from instruction dispatch. Each bytecode requires a minimum number of machine instructions to be executed. In this work, we introduce a novel approach for interpreter optimization that reduces instruction dispatch thanks to vectorization technology. We extend the split compilation paradigm to interpreters, thus guaranteeing that our approach exhibits almost no overhead at runtime. We take advantage of the vast research in vectorization and its presence in modern compilers. Complex analyses are performed ahead of time, and their results are conveyed to the executable bytecode. At runtime, the interpreter retrieves this additional information to build the SIMD IR (intermediate representation) instructions that carry the vector semantics. The bytecode language remains unmodified, making this representation compatible with legacy interpreters and previously proposed JIT compilers.We show that this approach drastically reduces the number of instructions to interpret and decreases execution time of vectorizable applications. Moreover, we map SIMD IR instructions to hardware SIMD instructions when available, with a substantial additional improvement. Finally, we finely analyze the impact of our extension on the behavior of the caches and branch predictors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.