Islet duodenal homeobox 1 (IDX-1/PF-1/STF-1/PDX-1), a homeodomain protein that transactivates the insulin promoter, has been shown by targeted gene ablation to be required for pancreatic development. After 90% pancreatectomy (Px), the adult pancreas regenerates in a process recapitulating embryonic development, starting with a burst of proliferation in the epithelium of the common pancreatic duct. In this model, IDX-1 mRNA was detected by semiquantitative reverse transcription-polymerase chain reaction in total RNA from isolated common pancreatic ducts at levels 10% of those of isolated islets. The IDX-1 mRNA levels were not significantly different for common pancreatic ducts of Px, sham Px, and unoperated rats and did not change with time after surgery. By immunoblot analysis, IDX-1 protein was only faintly detected in these ducts 1 and 7 days after Px or sham Px but was easily detected at 2 and 3 days after Px. Similarly, IDX-1 immunostaining was barely detectable in sham or unoperated ducts but was strong in ducts at 2-3 days after Px. The increase of IDX-1 immunostaining followed that of BrdU incorporation (proliferation). These results indicate a posttranscriptional regulation of the IDX-1 expression in ducts. In addition, islets isolated 3-7 d after Px showed higher IDX-1 protein expression than control islets. Thus, in pancreatic regeneration IDX-1 is upregulated in newly divided ductal cells as well as in islets. The timing of enhanced expression of IDX-1 implies that IDX-1 is not important in the initiation of regeneration but may be involved in the differentiation of ductal cells to beta-cells.
To learn more about islet vulnerability in the immediate posttransplant period, 400 syngeneic islets were transplanted under the kidney capsule of B6AF1 mice. Three groups of recipients were used: normal mice (normal), streptozotocin (STZ)-diabetic (diabetic), and STZ-diabetic kept hypo- or normoglycemic with insulin pellets (diabetic-normalized). Normoglycemia was achieved in all three groups 14 days after transplantation; however, in the diabetic and diabetic-normalized groups, blood glucose levels throughout the posttransplantation period were respectively higher and lower than in the normal group. Grafts were harvested 1, 3, 7, and 14 days after transplantation and analyzed for morphology, beta-cell death, beta-cell mass, insulin content, and insulin mRNA expression. In all groups, substantial damage in islet grafts was found on days 1 and 3 with apoptotic nuclei and necrotic cores; on day 3, beta-cell death was significantly higher in the diabetic group than in the other groups. Tissue remodelling occurred in all groups with stable graft appearance on day 14; the actual beta-cell mass of the grafts was lowest in the diabetic group. Graft insulin content decreased in all groups on day 1 and fell even further on days 3 and 7. Insulin mRNA levels of grafts retrieved from both the diabetic and diabetic-normalized group were lower than those from the normal group already by day 1 and remained lower on day 14. In conclusion, the first few days of islet transplantation, even under the most advantageous circumstances of excellent metabolic control, are characterized by dynamic changes, with substantial islet cell dysfunction and death followed by tissue remodelling and then stable engraftment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.