VP22, a structural protein from herpes simplex virus type I, exhibits the unique property of intercellular trafficking. This protein is exported from primary expressing cells and subsequently imported into neighbouring cells. This property is conserved when VP22 is genetically fused to a protein, making it a promising tool to enhance the delivery of a gene product. We chose to study the intercellular transport and biological effect of a fusion protein between the putative tumour suppressor gene p27 Kip1 and VP22. We show that in vitro, P27VP22 is able to spread as efficiently as VP22. Functionality of the P27VP22 protein was demonstrated by its ability to inhibit cyclin/CDK2 complexes activity. In proliferation and clonogenicity assays, transfection with the P27VP22 plasmid resulted in a stronger cell growth inhibition when compared to transfection with the p27 Kip1 vector. In vivo, sub cutaneous tumours established in nude mice were injected with naked DNA encoding P27 or P27VP22. Our results show that P27VP22 can spread in vivo and that injections of the P27VP22 plasmid resulted in a significantly greater antitumour activity than injections of the P27 plasmid. This study confirms the usefulness of VP22-mediated delivery and suggests that P27VP22 may have applications in cancer gene therapy.
VP22, a protein of the herpes simplex virus tegument, can form complexes with fluorescein-labeled oligonucleotides. These particles, termed "Vectosomes," are efficiently taken up by cells and remain stable in the cell cytoplasm without any particular activity. Interestingly, these Vectosomes can be disrupted by light, which releases the antisense activity. Here we show that anti-c-raf1 Vectosomes are efficiently activated by light in vivo after injection into subcutaneous A549 (non-small-cell lung cancer) tumors implanted in nude mice. Moreover, two injections per week of anti-c-raf1 Vectosomes followed by illumination result in a stronger inhibition of tumor growth than injections of the antisense alone or of the different control Vectosomes. This effect correlates with a strong inhibition of the c-Raf1 protein expression. As a consequence of c-Raf1 loss, apoptosis was also detected in these tumors. Vectosomes thus represent a new powerful tool to improve the delivery of oligonucleotides in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.