We fabricate an extremely thin optical fiber that supports a super-extended mode with a diameter as large as 13 times the optical wavelength, residing almost entirely outside the fiber and guided over thousands of wavelengths (5 mm), to couple guided light to warm atomic vapor. This unique configuration balances between strong confinement, as evident by saturation powers as low as tens of nW, and long interaction times with the thermal atoms, thereby enabling fast and coherent interactions. We demonstrate narrow coherent resonances (tens of MHz) of electromagnetically induced transparency for signals at the single-photon level and long relaxation times (10 ns) of atoms excited by the guided mode. The dimensions of the guided mode’s evanescent field are compatible with the Rydberg blockade mechanism, making this platform particularly suitable for observing quantum nonlinear optics phenomena.
We fabricate an extremely thin optical fiber that supports a super-extended mode with a diameter as large as 13 times the optical wavelength, residing almost entirely outside the fiber and guided over thousands of wavelengths (5 mm), in order to couple guided light to warm atomic vapor. This unique configuration balances between strong confinement, as evident by saturation powers as low as tens of nW, and long interaction times with the thermal atoms, thereby enabling fast and coherent interactions. We demonstrate narrow coherent resonances (tens of MHz) of electromagnetically induced transparency for signals at the single-photon level and long relaxation times (10 ns) of atoms excited by the guided mode. The dimensions of the guided mode's evanescent field are compatible with the Rydberg blockade mechanism, making this platform particularly suitable for observing quantum non-linear optics phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.