Camptothecin (CPT) belongs to a group of monoterpenoidindole alkaloids (TIAs) and its derivatives such as irinothecan and topothecan have been widely used worldwide for the treatment of cancer, giving rise to rapidly increasing market demands. Genes from Catharanthus roseus encoding strictosidine synthase (STR) and geraniol 10-hydroxylase (G10H), were separately and simultaneously introduced into Ophiorrhiza pumila hairy roots. Overexpression of individual G10H (G lines) significantly improved CPT production with respect to non-transgenic hairy root cultures (NC line) and single STR overexpressing lines (S lines), indicating that G10H plays a more important role in stimulating CPT accumulation than STR in O. pumila. Furthermore, co-overexpression of G10H and STR genes (SG Lines) caused a 56% increase on the yields of CPT compared to NC line and single gene transgenic lines, showed that simultaneous introduction of G10H and STR can produce a synergistic effect on CPT biosynthesis in O. pumila. The MTT assay results indicated that CPT extracted from different lines showed similar anti-tumor activity, suggesting that transgenic O. pumila hairy root lines could be an alternative approach to obtain CPT. To our knowledge, this is the first report on the enhancement of CPT production in O. pumila employing a metabolic engineering strategy.
Heat shock proteins (HSPs) exist extensively in eukaryotes and are conserved molecular chaperones with important contribution to plant's survival under environmental stresses. Here, the cloning and characterization of one complementary DNA (cDNA) designated as BcHSP70 from young seedlings of Brassica campestris were reported in the present work. Bioinformatic analysis revealed that BcHSP70 belongs to the plant HSP gene family and had the closest relationship with HSP70-4 from Arabidopsis thaliana. Constitutive overexpression of BcHSP70 in tobacco obviously conferred tolerance to heat stress by affecting different plant physiological parameters. In our study, transgenic tobaccos exhibited higher chlorophyll content than wild-type control when exposed to heat stress. Superoxide dismutase (SOD) and peroxidase (POD) activities, which were helpful to decrease the damage to the membrane system, were significantly higher in transformants compared to wild-type lines. Meanwhile, lower comparative electrical conductivity and malondialdehyde (MDA) content and higher proline and soluble sugar accumulation were found in transgenic tobaccos than in wild-type lines. All these above results indicated that this isolated BcHSP70 cDNA owned the ability to improve the tolerance to heat stress in transgenic tobacco, which provides helpful information and good basement to culture new robust B. campestris variety resistant to high-temperature stress by molecular breeding in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.