Additional informationReprints and permissions information is available online at www.nature.com/reprints. Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Competing financial interestsThe authors declare no competing financial interests. Europe PMC Funders GroupAuthor Manuscript Nat Clim Chang. Author manuscript; available in PMC 2017 December 01. Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.Natural disturbances, such as fires, insect outbreaks and windthrows, are an integral part of ecosystem dynamics in forests around the globe. They occur as relatively discrete events, and form characteristic regimes of typical disturbance frequencies, sizes and severities over extended spatial and temporal scales1,2. Disturbances disrupt the structure, composition and function of an ecosystem, community or population, and change resource availability or the physical environment3. In doing so, they create heterogeneity on the landscape4, foster diversity across a wide range of guilds and species5,6 and initiate ecosystem renewal or reorganization7,8.Disturbance regimes have changed profoundly in many forest ecosystems in recent years, with climate being a prominent driver of disturbance change9. An increase in disturbance occurrence and severity has been documented over large parts of the globe, for example, for fire10,11, insect outbreaks12,13 and drought14,15. Such alterations of disturbance regimes have the potential to strongly impact the ability of forests to provide ecosystem services to society6. Moreover, a climate-mediated increase in disturbances could exceed the ecological resilience of forests, resulting in lastingly altered ecosystems or shifts to non-forest ecosystems as tipping points are crossed16-18. Consequently, disturbance change is expected to be among the most profound impacts that climate change will have on forest ecosystems in the coming decades19.The ongoing changes in disturbance regimes in combination with their strong and lasting impacts on ecosystems have led to an in...
During the last decades, climate and land use changes led to an increased prevalence of megafires in Mediterranean-type climate regions (MCRs). Here, we argue that current wildfire management policies in MCRs are destined to fail. Focused on fire suppression, these policies largely ignore ongoing climate warming and landscape-scale buildup of fuels. The result is a 'firefighting trap' that contributes to ongoing fuel accumulation precluding suppression under extreme fire weather, and resulting in more severe and larger fires. We believe that a 'business as usual' approach to wildfire in MCRs will not solve the fire problem, and recommend that policy and expenditures be rebalanced between suppression and mitigation of the negative impacts of fire. This requires a paradigm shift: policy effectiveness should not be primarily measured as a function of area burned (as it usually is), but rather as a function of avoided socio-ecological damage and loss.
Fire has been used for centuries to generate and manage some of the UK's cultural landscapes. Despite its complex role in the ecology of UK peatlands and moorlands, there has been a trend of simplifying the narrative around burning to present it as an only ecologically damaging practice. That fire modifies peatland characteristics at a range of scales is clearly understood. Whether these changes are perceived as positive or negative depends upon how trade-offs are made between ecosystem services and the spatial and temporal scales of concern. Here we explore the complex interactions and trade-offs in peatland fire management, evaluating the benefits and costs of managed fire as they are currently understood. We highlight the need for (i) distinguishing between the impacts of fires occurring with differing severity and frequency, and (ii) improved characterization of ecosystem health that incorporates the response and recovery of peatlands to fire. We also explore how recent research has been contextualized within both scientific publications and the wider media and how this can influence non-specialist perceptions. We emphasize the need for an informed, unbiased debate on fire as an ecological management tool that is separated from other aspects of moorland management and from political and economic opinions.This article is part of the themed issue ‘The interaction of fire and mankind’.
Highly variable and synchronised production of seeds by plant populations, known as masting, is implicated in many important ecological processes, but how it arises remains poorly understood. The lack of experimental studies prevents underlying mechanisms from being explicitly tested, and thereby precludes meaningful predictions on the consequences of changing environments for plant reproductive patterns and global vegetation dynamics. Here we review the most relevant proximate drivers of masting and outline a research agenda that takes the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding. We divide the experimental framework into three main processes: resource dynamics, pollen limitation and genetic and hormonal regulation, and illustrate how specific predictions about proximate mechanisms can be tested, highlighting the few successful experiments as examples. We envision that the experiments we outline will deliver new insights into how and why masting patterns might respond to a changing environment.
Climatically controlled allocation to reproduction is a key mechanism by which climate influences tree growth and may explain lagged correlations between climate and growth. We used continent-wide datasets of tree-ring chronologies and annual reproductive effort in Fagus sylvatica from 1901 to 2015 to characterise relationships between climate, reproduction and growth. Results highlight that variable allocation to reproduction is a key factor for growth in this species, and that high reproductive effort ('mast years') is associated with stem growth reduction. Additionally, high reproductive effort is associated with previous summer temperature, creating lagged climate effects on growth. Consequently, understanding growth variability in forest ecosystems requires the incorporation of reproduction, which can be highly variable. Our results suggest that future response of growth dynamics to climate change in this species will be strongly influenced by the response of reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.