EPDM O-rings of gate valves employed for the construction of a second-generation accelerator for the production of neutron-rich Radioactive Ion Beams were studied in order to assess their sealing performance both during the facility service time and the post-service storage phase. Several O-ring specimens were at first exposed to different dose levels of mixed neutron and gamma radiations. Correspondent modifications of physical and mechanical properties of the material were investigated by means of uniaxial tensile tests, dynamic mechanical analyses, aging, compression set and vacuum leak tests. A hyperelastic strain energy function was adopted to fit the mechanical response of the material as a function of the absorbed dose. The minimum squeeze degree that guarantees O-ring sealing efficiency at different irradiation levels was determined by varying the interference between O-rings and grooves. A finite element model of the vacuum leak test was then set up to assess the contact pressure level required to ensure sealing. Numerical simulations of the gate valve main O-ring were subsequently carried out. By comparison of the predicted contact pressure and strain levels with experimental results, a life prediction map, as function of the service time, the storage time and the O-ring squeeze degree, was proposed.
The biomechanical properties of ascending aortic aneurysms were investigated only in the last decade in a limited number of studies. Indeed, in recent years, there has been a growing interest in this field in order to identify new predictive parameters of risk of dissection, which may have clinical relevance. The researches performed so far have been conducted according to the methods used in the study of abdominal aortic aneurysms. In most cases, uniaxial or biaxial tensile tests were used, while in a smaller number of studies other methods, such as opening angle, bulge inflation, and inflation-extension tests, were used. However, parameters and protocols of these tests are at present very heterogeneous in the studies reported in the literature, and, therefore, the results are not comparable and are sometimes conflicting. The purpose of this review then thence to provide a comprehensive analysis of the experimental methodology for determination of biomechanical properties in the specific field of aneurysms of the ascending aorta to allow for better comparison and understanding of the results.
Planar biaxial testing has been applied to a variety of materials to obtain relevant information for mechanical characterization and constitutive modeling in presence of complex stress states. Despite its diffusion, there is currently no standardized testing procedure or a unique specimen design of common use. Consequently, comparison of results obtained with different configurations is not always straightforward and several types of optimized shapes have been proposed. The purpose of the present work is to develop a procedure for comprehensive comparison of results of biaxial tests carried out on the same soft hyperelastic material, using different types of gripping methods and specimen shapes (i.e., cruciform and square). Five configurations were investigated experimentally using a biaxial test rig designed and built by the authors, using digital imaging techniques to track the displacements of markers apposed in selected positions on the surfaces. Then, material parameters for a suitable hyperelastic law were determined for each configuration examined, employing an inverse method which combines numerical simulations with the finite element method (FEM) and optimization algorithms. Finally, efficiency of examined biaxial configurations was assessed comparing stress reductions factor, degree and uniformity of biaxial deformation, and operative strain ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.