Particle-tracking microrheology (PT-μr) exploits the thermal motion of embedded particles to probe the local mechanical properties of soft materials. Despite its appealing conceptual simplicity, PT-μr requires calibration procedures and operating assumptions that constitute a practical barrier to its wider application. Here we demonstrate differential dynamic microscopy microrheology (DDM-μr), a tracking-free approach based on the multiscale, temporal correlation study of the image intensity fluctuations that are observed in microscopy experiments as a consequence of the translational and rotational motion of the tracers. We show that the mechanical moduli of an arbitrary sample are determined correctly over a wide frequency range provided that the standard DDM analysis is reinforced with an iterative, self-consistent procedure that fully exploits the multiscale information made available by DDM. Our approach to DDM-μr does not require any prior calibration, is in agreement with both traditional rheology and diffusing wave spectroscopy microrheology, and works in conditions where PT-μr fails, providing thus an operationally simple, calibration-free probe of soft materials.
We propose a novel n-p-n BJT radiation detector on high-resistivity silicon with integrated p-n-p transistor providing the quiescent base current of the detector. The dc operational limits of the proposed detector are analysed by means of numerical device simulations, pointing out that, by properly distancing the base of the p-n-p transistor from the emitter of the n-p-n detector, the latch-up of the parasitic thyristor embedded within the detector-plus-biasing-transistor structure takes place at relatively high current levels, where detector operation should anyway be avoided in order to prevent the associated current-gain loss. Numerical simulations provides insight about the bias dependence of charge-collection waveforms, indicating that minimization of the collecting time requires the detector quiescent current to be adjusted at the highest value still allowing high-injection effects to be avoided. A small-signal equivalent circuit of the proposed structure is also derived, allowing the impact of p-n-p biasing transistor and load resistance on the charge-collecting time constant to be evaluated. First experimental results show that fabricated structures are immune from the latch-up of the parasitic thyristor throughout their high-current-gain operating region and feature a minimum charge-collecting time constant of 35 µs, as tested by pulsed laser illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.