A constitutive model for the restoring force in pseudo-elastic shape memory oscillators is proposed. The model is developed in a thermomechanical framework and allows one to predict the temperature variations that typically arise in shape memory materials under dynamical loading. A peculiar feature of the model is that all the constitutive equations follow from two basic ingredients, the free energy and the dissipation functions, through the restrictions imposed by the balance equations, instead of being directly postulated as in standard internal variable formulations. The model is then implemented and employed to systematically characterize the nonlinear dynamic response of the oscillator. It turns out that non-regular responses occur around the jumps between different branches of frequency -response curves. The features of the response and the modalities of transition to chaos are described mainly by means of bifurcation diagrams. The effect of the main model parameters (pseudo-elastic loop shape and thermal effects) on the dynamics of the system is also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.