Design and functionalization strategies for multifunctional nanocarriers (e.g., nanoparticles, micelles, polymersomes) based on biodegradable/biocompatible polymers intended to be employed for active targeting and drug delivery are reviewed. This review will focus on the nature of the polymers involved in the preparation of targeted nanocarriers, the synthesis methods to achieve the desired macromolecular architecture, the selected coupling strategy, the choice of the homing molecules (vitamins, hormones, peptides, proteins, etc.), as well as the various strategies to display them at the surface of nanocarriers. The resulting morphologies and the main colloidal features will be given as well as an overview of the biological activities, with a special focus on the main in vivo achievements.
We have demonstrated that the polyethylene glycol (PEG) corona of long-circulating polymeric nanoparticles (NPs) favors interaction with the amyloid-beta (Aβ(1-42)) peptide both in solution and in serum. The influence of PEGylation of poly(alkyl cyanoacrylate) and poly(lactic acid) NPs on the interaction with monomeric and soluble oligomeric forms of Aβ(1-42) peptide was demonstrated by capillary electrophoresis, surface plasmon resonance, thioflavin T assay, and confocal microscopy, where the binding affected peptide aggregation kinetics. The capture of peptide by NPs in serum was also evidenced by fluorescence spectroscopy and ELISA. Moreover, in silico and modeling experiments highlighted the mode of PEG interaction with the Aβ(1-42) peptide and its conformational changes at the nanoparticle surface. Finally, Aβ(1-42) peptide binding to NPs affected neither complement activation in serum nor apolipoprotein-E (Apo-E) adsorption from the serum. These observations have crucial implications in NP safety and clearance kinetics from the blood. Apo-E deposition is of prime importance since it can also interact with the Aβ(1-42) peptide and increase the affinity of NPs for the peptide in the blood. Collectively, our results suggest that these engineered long-circulating NPs may have the ability to capture the toxic forms of the Aβ(1-42) peptide from the systemic circulation and potentially improve Alzheimer's disease condition through the proposed "sink effect".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.