Abstract. Advanced software engineering is the key factor in the design of future complex cognitive robots. It will decide about their robustness, (run-time) adaptivity, cost-effectiveness and usability.We present a novel overall vision of a model-driven engineering approach for robotics that fuses strategies for robustness by design and robustness by adaptation. It enables rigid definitions of quality-of-service, re-configurability and physics-based simulation as well as for seamless system level integration of disparate technologies and resource awareness.We report on steps towards implementing this idea driven by a first robotics meta-model with first explications of non-functional properties. A model-driven toolchain provides the model transformation and code generation steps. It also provides design time analysis of resource parameters (e.g. schedulability analysis of realtime tasks) as step towards resource awareness in the development of integrated robotic systems.
Robots that support humans by performing useful tasks (a.k.a., service robots) are booming worldwide. In contrast to industrial robots, the development of service robots comes with severe software engineering challenges, since they require high levels of robustness and autonomy to operate in highly heterogeneous environments. As a domain with critical safety implications, service robotics faces a need for sound software development practices. In this paper, we present the first large-scale empirical study to assess the state of the art and practice of robotics software engineering. We conducted 18 semi-structured interviews with industrial practitioners working in 15 companies from 9 different countries and a survey with 156 respondents from 26 countries from the robotics domain. Our results provide a comprehensive picture of (i) the practices applied by robotics industrial and academic practitioners, including processes, paradigms, languages, tools, frameworks, and reuse practices, (ii) the distinguishing characteristics of robotics software engineering, and (iii) recurrent challenges usually faced, together with adopted solutions. The paper concludes by discussing observations, derived hypotheses, and proposed actions for researchers and practitioners. CCS CONCEPTS • Computer systems organization → Robotics; • Software and its engineering;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.