Dog-transmitted rabies is responsible for more than 98% of human cases worldwide, remaining a persistent problem in developing countries. Mass vaccination targets predominantly major cities, often compromising disease control due to re-introductions. Previous work suggested that areas neighboring cities may behave as the source of these re-introductions. To evaluate this hypothesis, we introduce a spatially explicit metapopulation model for rabies diffusion in Central African Republic. Calibrated on epidemiological data for the capital city, Bangui, the model predicts that long-range movements are essential for continuous re-introductions of rabies-exposed dogs across settlements, eased by the large fluctuations of the incubation period. Bangui's neighborhood, instead, would not be enough to self-sustain the epidemic, contrary to previous expectations. Our findings suggest that restricting long-range travels may be very efficient in limiting rabies persistence in a large and fragmented dog population. Our framework can be applied to other geographical contexts where dog rabies is endemic.
The infectious period of a transmissible disease is a key factor for disease spread and persistence. Epidemic models on networks typically assume an identical average infectious period for all individuals, thus allowing an analytical treatment. This simplifying assumption is, however, often unrealistic, as hosts may have different infectious periods, due, for instance, to individual host–pathogen interactions or inhomogeneous access to treatment. While previous work accounted for this heterogeneity in static networks, a full theoretical understanding of the interplay of varying infectious periods and time-evolving contacts is still missing. Here, we consider a susceptible-infectious-susceptible epidemic on a temporal network with host-specific average infectious periods, and develop an analytical framework to estimate the epidemic threshold, i.e. the critical transmissibility for disease spread in the host population. Integrating contact data for transmission with outbreak data and epidemiological estimates, we apply our framework to three real-world case studies exploring different epidemic contexts—the persistence of bovine tuberculosis in southern Italy, the spread of nosocomial infections in a hospital, and the diffusion of pandemic influenza in a school. We find that the homogeneous parametrization may cause important biases in the assessment of the epidemic risk of the host population. Our approach is also able to identify groups of hosts mostly responsible for disease diffusion who may be targeted for prevention and control, aiding public health interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.