Figure 1: FaceForensics++ is a dataset of facial forgeries that enables researchers to train deep-learning-based approaches in a supervised fashion. The dataset contains manipulations created with four state-of-the-art methods, namely, Face2Face, FaceSwap, DeepFakes, and NeuralTextures. AbstractThe rapid progress in synthetic image generation and manipulation has now come to a point where it raises significant concerns for the implications towards society. At best, this leads to a loss of trust in digital content, but could potentially cause further harm by spreading false information or fake news. This paper examines the realism of state-ofthe-art image manipulations, and how difficult it is to detect them, either automatically or by humans.To standardize the evaluation of detection methods, we propose an automated benchmark for facial manipulation detection 1 . In particular, the benchmark is based on Deep-Fakes [1], Face2Face [59], FaceSwap [2] and NeuralTextures [57] as prominent representatives for facial manipulations at random compression level and size. The benchmark is publicly available 2 and contains a hidden test set as well as a database of over 1.8 million manipulated images. This dataset is over an order of magnitude larger than comparable, publicly available, forgery datasets. Based on this data, we performed a thorough analysis of data-driven forgery detectors. We show that the use of additional domainspecific knowledge improves forgery detection to unprecedented accuracy, even in the presence of strong compression, and clearly outperforms human observers.
Abstract:A new pansharpening method is proposed, based on convolutional neural networks. We adapt a simple and effective three-layer architecture recently proposed for super-resolution to the pansharpening problem. Moreover, to improve performance without increasing complexity, we augment the input by including several maps of nonlinear radiometric indices typical of remote sensing. Experiments on three representative datasets show the proposed method to provide very promising results, largely competitive with the current state of the art in terms of both full-reference and no-reference metrics, and also at a visual inspection.
We propose a new algorithm for the accurate detection and localization of copy-move forgeries, based on rotationinvariant features computed densely on the image. Dense-field techniques proposed in the literature guarantee a superior performance w.r.t. their keypoint-based counterparts, at the price of a much higher processing time, mostly due to the feature matching phase. To overcome this limitation, we resort here to a fast approximate nearest-neighbor search algorithm, PatchMatch, especially suited for the computation of dense fields over images. We adapt the matching algorithm to deal efficiently with invariant features, so as to achieve higher robustness w.r.t. rotations and scale changes. Moreover, leveraging on the smoothness of the output field, we implement a simplified and reliable post-processing procedure. The experimental analysis, conducted on databases available online, proves the proposed technique to be at least as accurate, generally more robust, and typically much faster, than state-of-the-art dense-field references.
Forensic analyses of digital images rely heavily on the traces of in-camera and out-camera processes left on the acquired images. Such traces represent a sort of camera fingerprint. If one is able to recover them, by suppressing the high-level scene content and other disturbances, a number of forensic tasks can be easily accomplished. A notable example is the PRNU pattern, which can be regarded as a device fingerprint, and has received great attention in multimedia forensics. In this paper we propose a method to extract a camera model fingerprint, called noiseprint, where the scene content is largely suppressed and model-related artifacts are enhanced. This is obtained by means of a Siamese network, which is trained with pairs of image patches coming from the same (label +1) or different (label −1) cameras. Although noiseprints can be used for a large variety of forensic tasks, here we focus on image forgery localization. Experiments on several datasets widespread in the forensic community show noiseprint-based methods to provide state-of-the-art performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.