Realized volatility, building on the theory of a simple continuous time process, has recently received attention as a nonparametric ex-post estimate of the return variation. This paper addresses the problem of parameter instability due to the presence of structural breaks in realized volatility in the context of three HAR-type models. The analysis is conducted on four major U.S. equity indices. More specifically, a recursive testing methodology is performed to evaluate the null hypothesis of constant parameters, and then, the performance of several forecast combinations based on different weighting schemes is compared in an out-of-sample variance forecasting exercise. The main findings are the following: (i) the hypothesis of constant model parameters is rejected for all markets under consideration; (ii) in all cases, the recursive forecasting approach, which is appropriate in the absence of structural changes, is outperformed by forecast combination schemes; and (iii) weighting schemes that assign more weight in most recent observations are superior in the majority of cases.
The aim of this paper is to investigate the relevance of structural breaks for forecasting the volatility of daily returns on BRICS countries (Brazil, Russia, India, China and South Africa). The data set used in the analysis is the Morgan Stanley Capital International MSCI daily returns and covers the period from 19 July 1999 to 16 July 2015. To identify structural breaks in the unconditional variance, a binary segmentation algorithm with a test, which considers both the fourth order moment of the process and persistence in the variance, has been implemented. Some forecast combinations that account for the identified structural breaks have been introduced and their performance has been evaluated and compared by using the Model Confidence Set (MCS). The results give significant evidence of the relevance of the structural breaks. In particular, in the regimes identified by the structural breaks, a substantial change in the unconditional variance is quite evident. In forecasting volatility, the combination that averages forecasts obtained using different rolling estimation windows outperforms all the other combinations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.