One of the biggest issues preventing the spread of electric vehicles is the difficulty in supporting distributed fast charging stations by actual distribution grids. Indeed, a significant amount of power is required for fast charging, especially if multiple vehicles must be supplied simultaneously. A possible solution to mitigate this problem is the installation of auxiliary batteries in the charging station to support the grid during high peak power demands. Nevertheless, the integration of high-voltage batteries with significant power is not a trivial task. This paper proposes the configuration and control of a converter to integrate batteries in a fast charging station. The proposed configuration makes it possible to decouple the grid power from the vehicle power using several auxiliary battery modules. At the same time, the converter makes it possible to draw different amounts of power from the battery modules, allowing the use of second life batteries performing in different ways. This paper discusses the design, control, and operation of the converter. Moreover, the effectiveness of the proposed control is shown by means of numerical results.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version.
Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
The spreading of electric vehicles led to a renewed interest for innovative traction drives. In this context, an electric traction drive based on a Modular Multilevel Converter and integrating batteries in each module has been recently proposed. This converter concentrates into a single unit, the control of the traction motors, the balancing and energy management of the battery cells and the vehicle recharge functions. By using different modulation techniques it is possible to optimize different aspects like efficiency or THD of output current and voltages. Performance and efficiency in balancing, traction and recharging operations have been analyzed for two modulation techniques: near level modulation and phase disposition PWM. The near level modulation reduces switching losses while the second one better follows voltage references reducing current THD and, consequently, conduction losses. In this paper an innovative modulation technique is proposed and its performance in terms of current THD and global losses are compared with the other two modulation strategies already proposed.
In the past, the diffusion of electric vehicles (EVs) has been hindered by energy storage limits. In fact, these are the reason for the limited EV range and the consequent range anxiety of their drivers. Thanks to constant improvements in storage system technologies over the years, in terms of both energy and power density, lithium-ion batteries (LiBs) now guarantee vehicle ranges higher than 150 km for small vehicles. Another important improvement has been achieved by the hybridisation of LiBs with other storage technologies such as electric double-layer capacitors or lithium-ion capacitors. By adding an additional storage unit (ASU) to the EV battery system, the overall efficiency increases, with a consequent gain in the vehicle's expected range. In a previous paper, an optimal sizing procedure was proposed, through which it is possible to calculate the optimal ASU mass that maximises the EV range for a given vehicle, ambient conditions, and driving cycle, which was considered to be known a priori. In the present work, a real-time implementation of the control strategy on which the optimal sizing procedure was based is proposed and analysed using the results of simulation tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.