We study compatible actions (introduced by Brown and Loday in their work on the non-abelian tensor product of groups) in the category of Lie algebras over a fixed ring. We describe the Peiffer product via a new diagrammatic approach, which specializes to the known definitions both in the case of groups and in the case of Lie algebras. We then use this approach to transfer a result linking compatible actions and pairs of crossed modules over a common base object L from groups to Lie algebras. Finally, we show that the Peiffer product, naturally endowed with a crossed module structure, has the universal property of the coproduct in XMod L (Lie R ).
The concept of a pair of compatible actions was introduced in the case of groups by Brown and Loday [6] and in the case of Lie algebras by Ellis [14]. In this article we extend it to the context of semi-abelian categories (that satisfy the Smith is Huq condition). We give a new construction of the Peiffer product, which specialises to the definitions known for groups and Lie algebras. We use it to prove our main result, on the connection between pairs of compatible actions and pairs of crossed modules over a common base object. We also study the Peiffer product in its own right, in terms of its universal properties, and prove its equivalence with existing definitions in specific cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.