To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant monomerization of the photoreceptor and interaction with COP1, the central regulator of light signaling. Thereby this signaling cascade controlled by UVR8 mediates UV-B photomorphogenic responses securing plant acclimation and thus promotes survival in sunlight.
Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic) interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV)-free retinal environment, the short wavelength-sensitive (SWS1) visual pigment in human (human S1) switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45–30 million years ago, the middle and long wavelength-sensitive (MWS/LWS) pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.
Duchenne muscular dystrophy (DMD) is one of the most severe X-linked, inherited diseases of childhood, characterized by progressive muscle wasting and weakness as the consequence of mutations in the dystrophin gene. The protein encoded by dystrophin is a huge cytosolic protein that links the intracellular F-actin filaments to the members of the dystrophin-glycoprotein-complex (DGC). Dystrophin deficiency results in the absence or reduction of complex components that are degraded through an unknown pathway. We show here that muscle degeneration in a Caenorhabditis elegans DMD model is efficiently reduced by downregulation of chn-1, encoding the homologue of the human E3/E4 ubiquitylation enzyme CHIP. A deletion mutant of chn-1 delays the cell death of body-wall muscle cells and improves the motility of animals carrying mutations in dystrophin and MyoD. Elimination of chn-1 function in the musculature, but not in the nervous system, is sufficient for this effect, and can be phenocopied by proteasome inhibitor treatment. This suggests a critical role of CHIP/CHN-1-mediated ubiquitylation in the control of muscle wasting and degeneration and identifies a potential new drug target for the treatment of this disease.
BackgroundMany vertebrate species use ultraviolet (UV) reception for such basic behaviors as foraging and mating, but many others switched to violet reception and improved their visual resolution. The respective phenotypes are regulated by the short wavelength-sensitive (SWS1) pigments that absorb light maximally (λmax) at ~360 and 395–440 nm. Because of strong epistatic interactions, the biological significance of the extensive mutagenesis results on the molecular basis of spectral tuning in SWS1 pigments and the mechanisms of their phenotypic adaptations remains uncertain.ResultsThe magnitudes of the λmax-shifts caused by mutations in a present-day SWS1 pigment and by the corresponding forward mutations in its ancestral pigment are often dramatically different. To resolve these mutagenesis results, the A/B ratio, in which A and B are the areas formed by amino acids at sites 90, 113 and 118 and by those at sites 86, 90 and 118 and 295, respectively, becomes indispensable. Then, all critical mutations that generated the λmax of a SWS1 pigment can be identified by establishing that 1) the difference between the λmax of the ancestral pigment with these mutations and that of the present-day pigment is small (3 ~ 5 nm, depending on the entire λmax-shift) and 2) the difference between the corresponding A/B ratios is < 0.002.ConclusionMolecular adaptation has been studied mostly by using comparative sequence analyses. These statistical results provide biological hypotheses and need to be tested using experimental means. This is an opportune time to explore the currently available and new genetic systems and test these statistical hypotheses. Evaluating the λmaxs and A/B ratios of mutagenized present-day and their ancestral pigments, we now have a method to identify all critical mutations that are responsible for phenotypic adaptation of SWS1 pigments. The result also explains spectral tuning of the same pigments, a central unanswered question in phototransduction.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0637-9) contains supplementary material, which is available to authorized users.
BackgroundOpsins are the only class of proteins used for light perception in image-forming eyes. Gene duplication and subsequent functional divergence of opsins have played an important role in expanding photoreceptive capabilities of organisms by altering what wavelengths of light are absorbed by photoreceptors (spectral tuning). However, new opsin copies may also acquire novel function or subdivide ancestral functions through changes to temporal, spatial or the level of gene expression. Here, we test how opsin gene copies diversify in function and evolutionary fate by characterizing four rhabdomeric (Gq-protein coupled) opsins in the scallop, Argopecten irradians, identified from tissue-specific transcriptomes.ResultsUnder a phylogenetic analysis, we recovered a pattern consistent with two rounds of duplication that generated the genetic diversity of scallop Gq-opsins. We found strong support for differential expression of paralogous Gq-opsins across ocular and extra-ocular photosensitive tissues, suggesting that scallop Gq-opsins are used in different biological contexts due to molecular alternations outside and within the protein-coding regions. Finally, we used available protein models to predict which amino acid residues interact with the light-absorbing chromophore. Variation in these residues suggests that the four Gq-opsin paralogs absorb different wavelengths of light.ConclusionsOur results uncover novel genetic and functional diversity in the light-sensing structures of the scallop, demonstrating the complicated nature of Gq-opsin diversification after gene duplication. Our results highlight a change in the nearly ubiquitous shadow response in molluscs to a narrowed functional specificity for visual processes in the eyed scallop. Our findings provide a starting point to study how gene duplication may coincide with eye evolution, and more specifically, different ways neofunctionalization of Gq-opsins may occur.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0823-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.