In the agricultural sector, the loss of stability related to the use of self-propelled agricultural machinery (SPAM) has caused and continues to cause accidents, often with fatal outcomes. The probability of occurrence of this risk can be reduced by acting on various aspects, but above all the presence of a protective structure is necessary. Depending on the machine, the protective structure can be a roll-over protective structure (ROPS), or a tip-over protective structure (TOPS). Hence, to reduce this gap, a reverse engineering approach and virtual engineering methods were applied starting from the analysis of harmonized standards actually in force, with the goal of providing both a reference procedure to be used in the risk assessment analysis of SPAM’s protective structures and technical information to manufacture and install protective structure on old agricultural machinery. Two representative case studies were used to validate the procedure by means of finite element method (FEM) analyses and computer aided design (CAD) prototyping. Results show that the proposed approach can represent a useful indication for the safety update of this type of machinery.
The use of agricultural tractors is a major concern in agriculture safety due to the high level of risk of loss of stability combined with the frequent absence of passive safety devices such as rollover protective structures (ROPSs). Indeed, although in most cases the ROPS is installed, when working in vineyards, orchards, or in other cases of limited crop height, the tractor is usually equipped with a foldable ROPS (FROPS), which is often misused because the effort needed for raising/lowering is excessive and the locking procedure is time-consuming. Thus, the goal of this research is to investigate the problem from the ergonomics point of view, developing a support system capable of facilitating FROPS operations. The research outcome consists of the development of a retrofitted full assistance system (FAS) for lowering/raising the FROPS by means of electric actuators. Additionally, an automatic locking device (ALD) was also developed to safely and automatically lock the FROPS. Both the FAS and ALD systems were implemented following a reverse-engineering approach, while their final validation was performed by means of a real prototype tested in a laboratory. The results achieved can contribute to expanding knowledge on human-centered research to improve safety in agriculture and thus social issues of sustainable agricultural systems.
Occupational Health and Safety (OHS) in agricultural activities is an issue of major concern worldwide notwithstanding the ever stricter regulations issued in this sector. In particular, most accidents are related to the use of tractors and the main causes of this phenomenon are due to the lack of rollover protective structures (ROPSs). This happens especially when tractors are used in particular in-field operations that are characterized by limited clearances between tractor and crop rows so that farmers usually use tractors without ROPS (e.g., dismounting it). To solve such a problem, foldable protective structures (FROPSs) have been proposed, which should augment the operator’s protection. However, FROPS’s conventional solutions underestimate the operators’ risk-taking behavior and the widespread misuse of FROPS due to the efforts needed to operate it. The current study aims at contributing to the improvement of the latter issue proposing the development of a novel approach for the implementation of partial assistance systems (PASs) that can reduce the physical effort of the operator when raising/lowering the FROPS. The proposed methodology, which is based on a reverse engineering approach, was verified by means of a practical case study on a tracklaying tractor. Results achieved can contribute to expanding knowledge on technical solutions aimed at improving the human-machinery interaction in the agricultural sector.
Counterbalanced forklift trucks (FLT) are frequently used in combination with interchangeable equipment in order to handle loads in different manners. The main risks which may arise after assembling interchangeable equipment to a FLT are related to the loss of stability of the assembly. Actually, the presence of interchangeable equipment and the associated payload may change in a significant way the overall centre of gravity with respect to the FLT in its basic configuration with forks. Therefore, the stability limits of the assembly, based on the same footprints on the ground of the FLT alone, are affected by the position of the overall centre of gravity. Thus, the presence of interchangeable equipment could reduce the functionality (e.g., lifting capability, lifting height, etc.) of the FLT in order to continue its stability during use. Often, interchangeable equipment is placed on the market by manufacturers other than the FLT manufacturer. In these cases, the correct and safe coupling of the interchangeable equipment with the FLT is the responsibility of the manufacturers of interchangeable equipment, including the stability risk assessment. Thus, the interchangeable equipment manufacturer should have access to the relevant information of the FLT concerning operative and structural features and its configuration as a procedure for assessing the correct and safe coupling. Otherwise, he should perform experimental stability tests for each model of FLT so that its interchangeable equipment can be fitted. Specific research activity is developed in order to define an analytical procedure to assess the stability of FLT when assembled with interchangeable equipment. Specific typologies of FLTs and interchangeable equipment have been selected in order to better characterise the case study. The analytical equations mimic the static stability tests. The results achieved have been compared to experimental data in order to optimise the procedure. The results attained by the application of the analytical procedure to all the combinations of main typologies of FLTs and the interchangeable equipment selected showed good agreement with experimental tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.