Combating the effects of disorder on light transport in micro- and nano-integrated photonic devices is of major importance from both fundamental and applied viewpoints. In ordinary waveguides, imperfections and disorder cause unwanted back-reflections, which hinder large-scale optical integration. Topological photonic structures, a new class of optical systems inspired by quantum Hall effect and topological insulators, can realize robust transport via topologically-protected unidirectional edge modes. Such waveguides are realized by the introduction of synthetic gauge fields for photons in a two-dimensional structure, which break time reversal symmetry and enable one-way guiding at the edge of the medium. Here we suggest a different route toward robust transport of light in lower-dimensional (1D) photonic lattices, in which time reversal symmetry is broken because of the non-Hermitian nature of transport. While a forward propagating mode in the lattice is amplified, the corresponding backward propagating mode is damped, thus resulting in an asymmetric transport insensitive to disorder or imperfections in the structure. Non-Hermitian asymmetric transport can occur in tight-binding lattices with an imaginary gauge field via a non-Hermitian delocalization transition, and in periodically-driven superlattices. The possibility to observe non-Hermitian delocalization is suggested using an engineered coupled-resonator optical waveguide (CROW) structure.
Unidirectional and robust transport is generally observed at the edge of two-or three-dimensional quantum Hall and topological insulator systems. A hallmark of these systems is topological protection, i.e. the existence of propagative edge states that cannot be scattered by imperfections or disorder in the system. A different and less explored form of robust transport arises in non-Hermitian systems in the presence of an imaginary gauge field. As compared to topologically-protected transport in quantum Hall and topological insulator systems, robust non-Hermitian transport can be observed in lower dimensional (i.e. one dimensional) systems. In this work the transport properties of one-dimensional tight-binding lattices with an imaginary gauge field are theoretically investigated, and the physical mechanism underlying robust one-way transport is highlighted. Back scattering is here forbidden because reflected waves are evanescent rather than propagative. Remarkably, the spectral transmission of the non-Hermitian lattice is shown to be mapped into the one of the corresponding Hermitian lattice, i.e. without the gauge field, but computed in the complex plane. In particular, at large values of the gauge field the spectral transmittance becomes equal to one, even in the presence of disorder or lattice imperfections. This phenomenon can be referred to as one-way non-Hermitian transparency. Robust one-way transport can be also realized in a more realistic setting, namely in heterostructure systems, in which a non-Hermitian disordered lattice is embedded between two homogeneous Hermitian lattices. Such a double heterostructure realizes asymmetric (non-reciprocal) wave transmission. A physical implementation of non-Hermtian transparency, based on light transport in a chain of optical microring resonators, is suggested.
The line position of the very weak S(2) transition of deuterium in the 2-0 band has been measured with a Comb-Assisted Cavity Ring Down spectrometer.The high sensitivity spectra were recorded at 5 and 10 mbar with a Noise Equivalent Absorption, a min ,of 8Â 10 -11 cm À1 . The line positions at 5 and 10 mbar were measured with sub-MHz accuracy (460 and 260 kHz, respectively). After correction of the line pressure-shift, the frequency at zero pressure of the S(2) transition of the first overtone band was determined to be 187 104 299.51 ± 0.50 MHz. This value agrees within 1.7 MHz with the frequency obtained from the best available ab initio calculations and corresponds to only 15% of the claimed theoretical uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.