In recent years, the adoption of deep learning techniques has allowed to obtain major breakthroughs in the automatic music generation research field, sparking a renewed interest in generative music. A great deal of work has focused on the possibility of conditioning the generation process in order to be able to create music according to human-understandable parameters. In this paper, we propose a technique for generating chord progressions conditioned on harmonic complexity, as grounded in the Western music theory. More specifically, we consider a pre-existing dataset annotated with the related complexity values and we train two variations of Variational Autoencoders (VAE), namely a Conditional-VAE (CVAE) and a Regressor-based VAE (RVAE), in order to condition the latent space depending on the complexity. Through a listening test, we analyze the effectiveness of the proposed techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.