A large number of hDAF transgenic pigs to be used for xenotransplantation research were generated by using sperm-mediated gene transfer (SMGT). The efficiency of transgenesis obtained with SMGT was much greater than with any other method. In the experiments reported, up to 80% of pigs had the transgene integrated into the genome. Most of the pigs carrying the hDAF gene transcribed it in a stable manner (64%). The great majority of pigs that transcribed the gene expressed the protein (83%). The hDAF gene was transmitted to progeny. Expression was stable and found in caveolae as it is in human cells. The expressed gene was functional based on in vitro experiments performed on peripheral blood mononuclear cells. These results show that our SMGT approach to transgenesis provides an efficient procedure for studies involving large animal models.SMGT ͉ hyperacute rejection ͉ swine
Sensitivity to transforming growth factor-b is impaired in thyroid tumours. Similar to Mad -Mother Against Decapentaplegic-(Smad)4 is frequently altered in cancers, but its involvement in this system is unknown. We analysed 56 thyroid tumours of various histotypes for Smad4 mutations by PCR-SSCP and sequencing, linking them to Smad4 reactivity as examined by immunohistochemistry (IHC), and 29 of them also for abnormalities in RNA expression due to alternative splicing. In all, 15/56 cases (27%), both benign and malignant lesions, harbour alterations of Smad4 coding sequence. We found several novel intragenic mutations (13 missense, two silent, one frameshift and one large insertion-deletion), with high incidence in the linker region. A subset of mutated tumours failed to express Smad4 protein by IHC. We have also detected four alternatively spliced tumourassociated Smad4 isoforms, lacking portions of the linker region, and three more due to unreported internal exonexon rearrangements. Smad4 is both frequently mutated and deregulated by aberrant splicing in thyroid tumours and these alterations may contribute as an early event to thyroid tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.