The InflateSail (QB50-UK06) CubeSat, designed and built at the Surrey Space Centre (SSC) for the Von Karman Institute (VKI), Belgium, was one of the technology demonstrators for the European Commission's QB50 programme. The 3.2 kg 3U CubeSat was equipped with a 1 metre long inflatable mast and a 10m 2 deployable drag sail. InflateSail's primary mission was to demonstrate the effectiveness of using a drag sail in Low Earth Orbit (LEO) to dramatically increase the rate at which satellites lose altitude and re-enter the Earth's atmosphere and it was one of 31 satellites that were launched simultaneously on the PSLV (polar satellite launch vehicle) C-38 from Sriharikota, India on 23 rd June 2017 into a 505km, 97.44 o Sun-synchronous orbit. Shortly after safe deployment in orbit, InflateSail automatically activated its payload. Firstly, it inflated its metrelong metal-polymer laminate tubular mast, and then activated a stepper motor to extend four lightweight bi-stable rigid composite (BRC) booms from the end of the mast, so as to draw out the 3.1m x 3.1m square, 12m thick polyethylene naphthalate (PEN) drag-sail. As intended, the satellite immediately began to lose altitude, causing it to re-enter the atmosphere just 72 days laterthus successfully demonstrating for the first time the de-orbiting of a spacecraft using European inflatable and drag-sail technologies. The InflateSail project was funded by two European Commission Framework Program Seven (FP7) projects: DEPLOYTECH and QB50. DEPLOYTECH had eight European partners including DLR, Airbus France, RolaTube, Cambridge University, and was assisted by NASA Marshall Space Flight Center. DEPLOYTECH's objectives were to advance the technological capabilities of three different space deployable technologies by qualifying their concepts for space use. QB50 was a programme, led by VKI, for launching a network of 50 CubeSats built mainly by university teams all over the world to perform first-class science in the largely unexplored lower thermosphere. The boom/drag-sail technology developed by SSC will next be used on a third FP7 Project: RemoveDebris, launched in 2018, which will demonstrate the capturing and de-orbiting of artificial space debris targets using a net and harpoon system. This paper describes the results of the InflateSail mission, including the observed effects of atmospheric density and solar activity on its trajectory and body dynamics. It also describes the application of the technology to RemoveDebris and its potential as a commercial de-orbiting add-on package for future space missions.
A summary of the activities performed over the last years at the von Karman Institute for Fluid Dynamics in the frame of hypersonic boundary layer transition studies is presented. Free-stream noise levels have been determined in the H3 Mach 6 conventional wind tunnel using double hot-wires and modal analysis. In the Longshot wind tunnel at Mach 10, an improved free-stream characterization method, based on the use of free-stream static pressure probes, has been applied, alleviating the needs for the limiting adiabatic and isentropic nozzle flow assumptions. Based on these improved flow characterization, natural transition experiments have been performed in both wind tunnels on 7 • half-angle conical geometries at 0 • angle of attack and with different nosetip radii. Measurements techniques include either infrared thermography or flush-mounted fast response thermocouples in order to determine the transition onset location. Boundary layer instabilities are visualized using a LIF-based Schlieren technique at Mach 10, revealing rope-shape structures typical of the second mode disturbances. Wall measurements using fast-response pressure sensors complete the investigations. Dominant boundary layer disturbances at various locations along the cone are determined and compared with theoretical predictions. The corresponding N-factor is inferred for each wind tunnel. A comparison of the different measurement techniques is finally reported. Nomenclature Symbols c Specific heat, J/(kg.K)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.