Proton and ion beams are radiotherapy modalities of increasing importance and interest. Because of the different biological dose response of these radiations as compared with high-energy photon beams, the current approach of treatment prescription is based on the product of the absorbed dose to water and a biological weighting factor, but this is found to be insufficient for providing a generic method to quantify the biological outcome of radiation. It is therefore suggested to define new dosimetric quantities that allow a transparent separation of the physical processes from the biological ones. Given the complexity of the initiation and occurrence of biological processes on various time and length scales, and given that neither microdosimetry nor nanodosimetry on their own can fully describe the biological effects as a function of the distribution of energy deposition or ionization, a multiscale approach is needed to lay the foundation for the aforementioned new physical quantities relating track structure to relative biological effectiveness in proton and ion beam therapy. This article reviews the state-of-the-art microdosimetry, nanodosimetry, track structure simulations, quantification of reactive species, reference radiobiological data, cross-section data and multiscale models of biological response in the context of realizing the new quantities. It also introduces the European metrology project, Biologically Weighted Quantities in Radiotherapy, which aims to investigate the feasibility of establishing a multiscale model as the basis of the new quantities. A tentative generic expression of how the weighting of physical quantities at different length scales could be carried out is presented.
To study the track structure of light ions, a measuring device has been developed at the Legnaro National Laboratory of INFN, which can be used to investigate separately the penumbra region of particle tracks and the trackcore region, which is a few nanometres in diameter. The device is based on single-electron counting techniques by means of a gas detector; it simulates a 'nanometre-sized' biological volume of about 20 nm in diameter that can be moved with respect to a narrow particle beam to measure the ionizationcluster-size distributions caused within the target volume by the passage of single primary particles, as a function of the impact parameter. To investigate the ionization-cluster-size formation caused by primary particles of medical interest when they penetrate through or pass by the target volume at a specified impact parameter, measurements and Monte Carlo simulations were performed for 20 MeV protons, 16 MeV deuterons, 48 MeV 6 Li-ions, 26.7 MeV 7 Li-ions and 96 MeV 12 C-ions. The detailed analysis of the resulting distributions showed that in the track-core region their shape is mainly determined by the mean free ionization path length of the primary particles, whereas in the penumbra region the shape of the distributions is almost independent of the impact parameter, and also of the particle type and velocity.
This paper presents an original methodology for the instantaneous in-cylinder pressure waveform reconstruction in a spark-ignited internal combustion engine. The methodology is based on the existence of a linear correlation, characterized by frequency response functions, between in-cylinder pressure and engine speed signals. This correlation is experimentally verified and evaluated by simultaneous measurements of the above-mentioned quantities. The evaluation of different frequency response functions, one for each steady-state condition investigated, allows recovering the pressure waveform even under other engine running conditions (i.e., transients). In this way, during on-board operation, the pressure waveform could be recovered using only the engine speed signal, already present in current production electronic control units. In this paper the signal processing methodology and some experimental results, obtained during transient tests, are presented. The methodology could be interesting for the development of advanced engine control strategies aimed at the management of the torque generated by the engine. As an example, traction control in drive-by-wire systems could be a possible challenging application. The in-cylinder pressure reconstruction performed using the frequency response functions, in fact, allows the evaluation of the indicated torque. An important characteristic of this methodology is, furthermore, the diagnostic capability for the combustion process, that is guaranteed by the linear correlation between in-cylinder pressure and instantaneous engine speed waveforms. Also in presence of a misfiring cylinder, when the instantaneous engine speed waveform is strongly affected by the absence of combustion, the reconstructed in-cylinder pressure shows a good agreement with the measured one. The experimental tests have been conducted in a test cell using a four-cylinder production engine. It has to be noted, anyway, that the same methodology can be applied to engines with a higher number of cylinders.
Proton beams (62 Mev) are used by the Laboratori Nazionali del Sud of the Italian Institute of Nuclear Physics to treat eye melanoma tumours at the therapeutic facility called CATANA. A cylindrical slim tissue-equivalent proportional counter (TEPC) of 2.7 mm external diameter has been used to compare the radiation quality of two spread-out Bragg peaks (SOBP) at the CATANA proton beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.