During the summer of 2010, 31 species including fish, echinoderms, gastropods, crustaceans, cephalopods and sponges were sampled in the Bay of Villefranche on the French Mediterranean coast and screened for the presence of PLTX-group toxins using the haemolytic assay. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used for confirmatory purposes and to determine the toxin profile. The mean toxin concentration in the whole flesh of all sampled marine organisms, determined using the lower- (LB) and upper-bound (UB) approach was 4.3 and 5.1 µg·kg−1, respectively, with less than 1% of the results exceeding the European Food Safety Authority (EFSA) threshold of 30 µg·kg−1 and the highest values being reported for sea urchins (107.6 and 108.0 µg·kg−1). Toxins accumulated almost exclusively in the digestive tube of the tested species, with the exception of octopus, in which there were detectable toxin amounts in the remaining tissues (RT). The mean toxin concentration in the RT of the sampled organisms (fishes, echinoderms and cephalopods) was 0.7 and 1.7 µg·kg−1 (LB and UB, respectively), with a maximum value of 19.9 µg·kg−1 for octopus RT. The herbivorous and omnivorous organisms were the most contaminated species, indicating that diet influences the contamination process, and the LC-MS/MS revealed that ovatoxin-a was the only toxin detected.
Based on manually analyzed waveforms recorded by the permanent Ecuadorian network and our large aftershock deployment installed after the Pedernales earthquake, we derive three‐dimensional Vp and Vp/Vs structures and earthquake locations for central coastal Ecuador using local earthquake tomography. Images highlight the features in the subducting and overriding plates down to 35 km depth. Vp anomalies (∼4.5–7.5 km/s) show the roughness of the incoming oceanic crust (OC). Vp/Vs varies from ∼1.75 to ∼1.94, averaging a value of 1.82 consistent with terranes of oceanic nature. We identify a low Vp (∼5.5 km/s) region extending along strike, in the marine forearc. To the North, we relate this low Vp and Vp/Vs (<1.80) region to a subducted seamount that might be part of the Carnegie Ridge (CR). To the South, the low Vp region is associated with high Vp/Vs (>1.85) which we interpret as deeply fractured, probably hydrated OC caused by the CR being subducted. These features play an important role in controlling the seismic behavior of the margin. While subducted seamounts might contribute to the nucleation of intermediate megathrust earthquakes in the northern segment, the CR seems to be the main feature controlling the seismicity in the region by promoting creeping and slow slip events offshore that can be linked to the updip limit of large megathrust earthquakes in the northern segment and the absence of them in the southern region over the instrumental period.
models were calculated using local earthquake tomography in the region affected by the 2016 Pedernales, Ecuador earthquake • Tomographic images highlight the heterogeneities of the margin affected by seamounts and ridges comprising the oceanic crust • Carnegie Ridge seems the main feature controlling the seismic activity and the offshore extent of large megathrust earthquakes in the region Supporting Information:
models were calculated using local earthquake tomography in the region affected by the 2016 Pedernales, Ecuador earthquake • Tomographic images highlight the heterogeneities of the margin affected by seamounts and ridges comprising the oceanic crust • Carnegie Ridge seems the main feature controlling the seismic activity and the offshore extent of large megathrust earthquakes in the region Supporting Information:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.