This report presents the extensive literature search conducted on 1) the occurrence of different cyanotoxins in food matrices; 2) the analytical methods for their detection; 3) their toxicological profile; 3) the environmental factors affecting toxicity of cyanobacterial population and 4) the combined effects of mixtures of cyanotoxins and other chemicals. It also includes a review of guidelines values or health-alert levels for cyanotoxins in food (or drinking water) adopted world-wide. The methodological aspects and the queries used in the extensive literature search, the collection and screening of retrieved papers and the inventory are briefly described in the report; all details are available in 3 supplementary appendices to this report. The analysis of collected papers indicated that most of them are focused on a single microcystin (MC) variant (MC-LR) out of the almost 100 MC known. Many studies on occurrence are affected by limited quality, due to analytical drawbacks in the detection methods and were not considered in the exposure assessment. Toxicity studies useful for the derivation of health based reference values are few, being many of them carried out using i.p. injection, which is poorly representative of actual human exposure. In addition, those toxicological studies carried out with poorly characterised cyanobacterial extracts or focused on single parameters, using a single dose, devoted to elucidation of mechanism of action, reporting qualitative description of effects were not used for data extraction. The relevant exposure scenarios are also described, although being the available data on exposure very limited, no definite conclusion on the health risks for the exposed population could be drawn. However, the possibility of risky exposure is evidenced for fish and shell-fish consumers and for blue-green algae supplements (BGAS) as well in relation to MC contamination. Finally, many data gaps were identified. © European Food Safety Authority, 2016Key words: Cyanobacteria, cyanotoxins, occurrence, toxicity, exposure, risk assessment, data gaps. Question number: EFSA-Q-2015-00141Correspondence:sc.secretariat@efsa.europa.eu Cyanotoxins in foodThe present document has been produced and adopted by the bodies identified above as author(s). This task has been carried out exclusively by the author(s) in the context of a contract between the European Food Safety Authority and the author(s), awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.www.efsa.europa.eu/publications 2 EFSA Supporting publication 2016:EN-998NDisclaimer: The present document has been produced and adopted by the bodies identified above as author(s). This task has b...
Abstract:It has been demonstrated that polymeric resins can be used as receiving phase in passive samplers designed for the detection of lipophilic marine toxins at sea and was referred to as solid phase adsorption toxin tracking (SPATT). The present study describes the uptake and desorption behaviour of the lipophilic marine toxins okadaic acid (OA) and dinophysistoxin-1 (DTX1) from Prorocentrum lima cultures by five styrene-divinylbenzene based polymeric resins Sepabeads ® SP850, Sepabeads ® SP825L, Amberlite ® XAD4, Dowex ® Optipore ® L-493 and Diaion ® HP-20. All resins accumulated OA and DTX1 from the P. lima culture with differences in adsorption rate and equilibrium rate. Following statistical evaluation, HP-20, SP850 and SP825L demonstrated similar adsorption rates. However, possibly due to its larger pore size, the HP-20 did not seem to reach equilibrium within 72 h exposure as opposed to the SP850 and SP825L. This was confirmed when the resins were immersed at sea for 1 week on the West Coast of Ireland. Furthermore, this work also presents a simple and efficient extraction method suitable to SPATT samplers exposed to artificial or natural culture media.
The freshwater cyanobacterium Cylindrospermopsis raciborskii is known to produce toxic effects in several countries. Acute and chronic exposures to C. raciborskii in Australia have been linked to liver damage (hepatotoxicity) with concomitant effects on the kidneys, adrenal glands, small intestine, lungs, thymus, and heart. The alkaloid cylindrospermopsin, which produces these toxic effects, is thought to be a potent inhibitor of protein synthesis. C. raciborskii strains producing cylindrospermopsin or analogue alkaloids have also been reported in Florida, USA, and Thailand. Brazilian isolates of C. raciborskii are also toxic but act by a different mechanism, causing acute death in mice with neurotoxic symptoms similar to those induced by the saxitoxins. In this article we compare the toxicity in the mouse of a C. raciborskii French strain with C. raciborskii strains from various other sources (Australia, Brazil, Mexico, and Hungary). We tested the toxicity of cell extracts by a mouse bioassay. Acute, fatal neurotoxicity was produced by the Brazilian strain, which was confirmed by liquid chromatography with fluorescence detection of the cell extracts, which revealed the presence of saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin, along with two unidentified compounds. Acute hepatotoxicity with severe liver, kidney, and thymus damage was observed with the Australian cylindrospermopsin-producing strain. The Mexican and Hungarian strains were not found to be toxic to mice in our experimental conditions. No animals died after exposure to the extracts of the French C. raciborskii strain. Histological examination of the liver revealed moderate, multifocal necrosis characterized by small areas of hepatocellular necrosis, combined with disorganization of the parenchyma and congestion of the inner sinusoid. These symptoms and lesions resembled those induced by cylindrospermopsin, but the chemical analysis performed by liquid chromatography coupled with either a diode array detector or a mass spectrometer demonstrated that this toxin was not present in our culture extract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.