Two slightly lithified volcanic rich layers (VRL) (former tephra) SVT-2 (San Vittorino) and CAC (Castiglione a Casauria) were sampled from two distinct post-evaporitic Messinian stratigraphic sections (Abruzzo, Central Italy). They crop only few tens of km apart and are predominantly massive, although some specimens show sedimentary structures. Both VRLs were investigated for the first time by field, mesoscopic, X-ray powder diffraction (XRPD), transmission optical microscopy (TOM), scanning electron microscopy (SEM), bulk composition, electron-microprobe analysis (EMPA) and quantitative textural attributes by image analysis. The XRPD analysis detects the presence of a glass phase, plus few (< 2 area %) magmatic-like feldspars, clinopyroxene and biotite and stratigraphically variable sedimentary minerals such as calcite, dolomite, illite and montmorillonite (from 0 to 40 area %). The 2D image analysis performed on SEM microphotographs reveals that both sections are composed of very fine glass shards, magmatic minerals are never isolated, whilst the carbonate crystals mainly fill voids among volcanic particles. Both these VRLs have identical rhyolitic glass compositions that closely overlap with those of previously-studied coeval and stratigraphically related sections occurring in the northern Apennine region and dated as 5.5 Ma. The 2D textural features of glassy particles (length, width, aspect ratio, grain-size distribution, MZ , σi, SKi, KG and roundness) in both SVT-2 and CAC sections are very similar and also close to the northern section of Camporotondo (Marche region). The outcomes provided here indicate that SVT-2 and CAC sections represent the southernmost distal deposits of the same large eruption that occurred about 5.5 Ma (VRL-5.5). They result from distal fallout of tephra through seawater, occasionally remobilised under low energy and localised conditions, especially in the uppermost part of the CAC section. All the VRL-5.5 rocks are probably related to a very large eruption that occurred in the Carpathian-Pannonian magmatic district. The analytical protocols used in this study can be useful to investigate other ancient volcanic-rich layers, corresponding to lithified tephra.
A Messinian and lithified horizon enriched in volcanic particles with thicknesses of 170–180 cm crops in the Camporotondo (CR) section (Marche, Italy). This volcanic-rich layer (VRL) was investigated by field plus mesoscopic observations, X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), bulk composition methods and electron-microprobe analysis (EMPA). The quantitative textural features of volcanic and sedimentary components were determined by 2D image analysis. The lowermost massive 70–80 cm portion is free of sedimentary structure or characterised only by plane-parallel ones, whereas the uppermost one is undulated and cross-laminated. The XRPD and SEM outcomes unveil that the VRL of CR is mainly composed of glassy shards (≥80 area%), a variable amount of sedimentary minerals (<20 area%) and a very low content of magmatic minerals (few area%). The bulk and micro-chemical attributes of volcanic and glassy materials are rhyolitic and almost identical to previous VRLs dated at 5.5 Ma (VRL-5.5). The signatures of immobile elements and the high amount of H2O present in the glass fraction suggest a provenance from a convergent geodynamic setting. The 2D image analysis on SEM observations show that the VRL-5.5 of CR is composed of very fine and sorted (averages of MZ of 5,72 and σi of 0,70), scarcely vesicular, glass shards, with similar long and short size dimensions, shape and roundness. The VRL-5.5 of CR is free of large minerals and fossils. The coupling of mesoscopic and microscopic determinations indicates that the lowermost interval was deposited such as a primary tephra, i.e., fallout pyroclasts sinking in seawater. Instead, the uppermost interval derives from local, low-energy and sin-depositional remobilisation of the same VRL-5.5. The textural attributes of the volcanic fractions, the sedimentological features and the thickness of the VRL at CR correspond to the westward deposit of a still unknown eruption likely occurred at 5.5 Ma.
<p>A volcanic-rich horizon crops along the Northern Apennines chain for about 200 km, in the post-evaporitic sedimentary sequence with an age of 5.5 Ma. Its thickness ranges between 30-200 cm and has been interpreted either as a primary fallout or a giant gravity flow in seawater (Aldinucci et al., 2005; Trua et al., 2010; Cosentino et al., 2013). Here, we focus on the two southernmost occurrences in the Abruzzo region (Central Italy): Castiglione a&#8217; Casauria (CAC 42&#176;14'10'' 13&#176;53'29') and San Vittorino (SVT 42&#176;12'10'' 13&#176;53'29'') villages.</p><p>The SVT and CAC deposits are lithified with thickness of 80 and 220 cm, respectively, mildly fractured and greyish to light brown in colour. Four (SVT) and fifteen (CAC) oriented samples coaxial to the field, were cut and polished to expose about 470 and 700 cm<sup>2</sup>, respectively, of their vertical mesoscopic surfaces. The oriented thin sections and powders were prepared according to these mesoscopic attributes.</p><p>The XRPD (X-ray powder diffraction) spectra show the presence of a peculiar prominent large shoulder reflecting significative silicate non-crystalline phase, i.e. volcanic glass, plus faint Bragg reflections indicative of minor amounts of quartz, two feldspars (anorthite and sanidine), clinopyroxene, biotite and montmorillonite. The latter mineral results from post-emplacement and secondary crystallization. In addition, calcite and dolomite XRPD peaks occur with intensity inversely proportional to that of the silicate glass, reflecting the abundance or paucity of sedimentary versus volcanic fractions in sub-layers.</p><p>The microscopic 2D textures plus compositional features were investigated by SEM and EPMA. Both volcanic layers are very rich in fine-grained (averaging on 200 mm) and highly sorted glassy ashy clasts, while minerals are very poor (< 5 area%) in agreement with XRPD outcomes. Lithified ashes are mainly blocky in shape and un-broken. The ashes plot in the rhyolitic TAS field and overlap those already reported from other Northern Apennine sites. The amount of volatiles (H<sub>2</sub>O + CO<sub>2</sub>) estimated from EPMA average on about 6 wt.%, in agreement with the quantities of LOI determined on both bulk samples.</p><p>Field observations coupled with analysis on mesoscopic polished rock slices and thin sections do not shown any significant vertical size gradation and sorting, while fossils are almost absent. By contrast, both volcanic-rich deposits show: sedimentary- and volcanic-rich sub-layers, cm-sized volcanic clasts dispersed prevalently on the uppermost sedimentary sub-layers, cm-sized convolute laminations and slumped pseudo-beds. All these features demonstrate mass transport, soft-sediment deformation and fluid escape in seawater. Nonetheless, the absence of rounded ashy clasts, lithic sedimentary rock and classic Bouma sequence features (typical in coeval and adjacent deposits) mirror for local remobilization of poorly consolidated to loose carbonate and tephra deposits. In parallel, the high sorting of fine ashy clasts suggest a primary deposition from a distal fall-out eruptions. The location and features of both SVT and CAC volcanic-rich layers extend the previously inferred distribution of this ancient volcanic eruption.</p><p>References</p><p>Aldinucci et al., 2005. GeoActa, 4, 2005, pp. 67-82</p><p>Cosentino et al., 2013. Geology, 41, pp. 323-326</p><p>Trua et al., 2010. Italian Journal of Geosciences, 129, pp. 269-279</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.